

Berrimah North Drainage Study

City of Darwin

August 2014

Document Verification

Job Title BERRIMAH NORTH DRAINAGE STUDY

Job Number 15988

Document Title STORMWATER DRAINAGE STUDY

Document Control

Date	Document	Revision No.	Author	Reviewer
08-04-2014	Draft	01	NB	MVI
21.05.2014	90% Issue	02	NB	MVI
30.05.2014	90% Issue	03	NB	MVI
09.07.2014	Final	04	NB	MVI
19.08.2014	Final with additional comments	05	NB	MVI

Approval for Issue

Name	Signature	Date
Michael Van Itallie	Mundant	19.08.2014
Natasha Bertinazzi	Antago	19.08.2014

© Document copyright of ADG Engineers (Aust) Pty Ltd

This document is and shall remain in the property of ADG. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

To the extent permitted by law, ADG expressly disclaims and excludes liability for any loss, damage, cost or expenses suffered by any third party relating to or resulting from the use of, or reliance on, any information contained in this report. ADG does not admit that any action, liability or claim exist or be available to any third party.

Contents

EXE	CUTIV	E SUMM	IARY	7	
1	INTRODUCTION				
	1.1	PURPO	DSE OF REPORT	8	
	1.2	AREA	DETAIL	8	
	1.3	EXISTI	NG SITE FEATURES	9	
		1.3.1	Catchment 1	10	
		1.3.2	Catchment 2	11	
		1.3.3	Catchment 3	11	
		1.3.4	Catchment 4	11	
		1.3.5	Catchment 5	12	
		1.3.6	Catchment 6	12	
		1.3.7	Catchment 7	12	
		1.3.8	Catchment 8	12	
		1.3.9	Catchment 9	13	
		1.3.10	Catchment 10	13	
		1.3.11	Catchment 11	13	
		1.3.12	Catchment 12	13	
	1.4	SURRO	DUNDING LAND USE	14	
2	PRO	14			
	2.1	LAND	USE PLANNING	14	
	2.2	OPTIO	NS, REQUIREMENTS AND OPPORTUNITIES	15	
3	DAT	A COLLE	ECTION	15	
4	MOD	ELLING	PROCEDURE	15	
	4.1	ASSUN	I PTIONS	16	
5	HYD	ROLOGI	C MODELLING	16	
	5.1	HYDRA	AULIC MODEL – XP-STORM	17	
		5.1.1	XPSTORM Rainfall Parameters	17	
		5.1.2	Hydrologic Modelling Assumptions and Methodology	17	
	5.2	DESIG	N FLOW VERIFICATION	18	
	5.3	CALIBI	RATION	18	
6	HYD	RAULIC	MODELLING	19	
	6.1	Model	Setup	19	
		6.1.1	Manning's Coefficient	19	
		6.1.2	Inflow Locations	20	
		6.1.3	Downstream Boundary Condition	20	
	6.2	Existin	g Scenario	20	
		6.2.1	Amy Johnson Avenue Culverts	20	
		6.2.2	Vanderlin Drive Culvert	21	

Ref: 15988 C R001 Revision 5 19.08.2014.docx August 2014

		6.2.3	Internal Existing Culverts	21
		6.2.4	Existing Scenario Flooding and Flow Results	22
	6.3	Post-De	eveloped Scenario	24
		6.3.1	Selection Criteria for Treatment Options	24
		6.3.2	Selection Criteria for Treatment Locations	24
		6.3.3	Overall Drainage Network	25
		6.3.4	Pipe Network	25
		6.3.5	Conveyance Channels	25
		6.3.6	Internal Road Crossings	26
		6.3.7	Detention Basins	27
		6.3.8	Post Development Scenario Results	29
7	IMP/	ACT ASS	ESSMENT	30
	7.1	Peak Fl	lood Levels	30
		7.1.1	Impact Assessment	30
	7.2	Peak D	ischarge at Lawful Point of Discharge	31
8	ALT	ERNATIV	E SOLUTIONS	32
9	DEV	ELOPER	CONTRIBUTION	32
10	CON	CLUSIO	N	33

Tables

Table 1 – Property Detail	8
Table 2 – 1 in 100 year ARI Rational Method vs XP-STORM Generated Peak Discharges	18
Table 3 – Pervious Infiltration Calibration	19
Table 4 – Manning's Table	19
Table 5 – Amy Johnson Avenue Culvert Details	21
Table 6 - Vanderlin Drive Culvert Details	21
Table 7 – Internal Culvert Details	22
Table 8 – Existing Peak Flood Levels and Velocities	23
Table 9 – Existing Peak Flows	23
Table 10 – Channel Parameters	26
Table 11 – Internal Road Crossing Culvert Details	27
Table 12 – Detention Basin Volumes and Water Levels	28
Table 13 – Detention Basin Outlet Configuration	28
Table 14 – Post-Development Flood Levels, Velocities and Flow	29
Table 15 – Post-Development Flows	30
Table 16 – Existing and Post-Development Peak Flood Levels and Affluxes	31
Table 17 - Existing and Post-Development Peak Discharge and Affluxes	32
Table 18 – Summary of Developer Contribution	33
Table 19 – Adopted Intensity Frequency Data (mm/hr)	2
Table 20 – XP-STORM Rainfall Multipliers Applied to Temporal Patterns (mm)	3

Figures

Figure 1 – Locality Map (As accessed from Google maps 10.03.2014)	9
Figure 2 – Existing Site Condition	10
Figure 3 - Catchment 1 Existing Site Condition	10
Figure 4 – Catchment 2 Existing Site Condition	11
Figure 5 – Catchment 3 Existing Site Condition	11
Figure 6 – Catchment 4 Existing Site Condition	11
Figure 7 – Catchment 5 Existing Site Condition	12
Figure 8 – Catchment 6 Existing site Condition	12
Figure 9 – Catchment 7 Existing Site Condition	12
Figure 10 – Catchment 8 Existing site Condition	12
Figure 11 – Catchment 9 Existing Site Condition	13
Figure 12 – Catchment 10 Existing Site Condition	13
Figure 13 – Catchment 11 Existing Site Condition	13
Figure 14 – Catchment 12 Existing Site Condition	13
Figure 15 – Photo 1	39
Figure 16 – Photo 2	39
Figure 17 – Photo 3	40
Figure 18 – Photo 4	40
Figure 19 – Photo 5	41
Figure 20 – Photo 6	41
Figure 21 – Photo 7	42
Figure 22 – Photo 8	42
Figure 23 – Photo 9	43
Figure 24 – Photo 10	43
Figure 25 – Photo 11	44
Figure 26 – Photo 12	44
Figure 27 – Photo 13	45
Figure 28 – Photo 14	45
Figure 29 - Photo 15	46

Appendices

Appendix A Berrimah North Area Plan (November 2013) Appendix B Site Photos Appendix C XP-STORM Rainfall Parameters Appendix D Pre Development Catchment Delineation Plan Appendix E Pre Development Catchment Flood Extents

- Appendix F Preliminary Bulk Earthworks Appendix G Post Development Catchment Plans Appendix H Post Development Schematic Stormwater Network Appendix I Post Development Flood Extents Appendix J Inflow Locations form XP-STORM Appendix K Proposed Road Network and Typical Sections
- Appendix L Developer Contribution Details

EXECUTIVE SUMMARY

This report provides the City of Darwin with information of the impact of development in conjunction with the Draft Area Plan for Berrimah North on stormwater drainage.

This Drainage Study investigates the flood behaviour of the area in its existing condition and ensures that the proposed development will not cause any worsening of peak stormwater runoff on downstream receiving environments. The receiving environments in particular are the Marrara Swamp, Rapid Creek, Ironstone and Knuckey Lagoons.

All of the design elements in this report are preliminary and are based on LiDAR survey data and it is recommended that further detailed survey will be required during the detailed design phase.

This report identified that the topography in this area is very flat and as such standard pipe drainage is not feasible in all parts the Berrimah North Area. In these areas open channels are recommended to convey the minor and major stormwater flows.

It was also identified that the existing culverts beneath Amy Johnson Avenue near the Boulter Road – Amy Johnson Avenue intersection did not have a free flowing discharge during the wet season and this was encompassed in the 2d hydraulic model.

It was identified that the most effective stormwater drainage design, given the site constraints, was a combination of pipe drainage and open channels. 7 detention basins are proposed to detain the increased stormwater runoff to ensure that the downstream peak flow rate is not worsened. These recommendations can be used as guidelines to achieve non-worsening during the detail design phase.

Through the use of open channels there is the potential to provide stormwater treatment to this area. This will help maintain the environmental health of the receiving environments.

The overall findings show that there is no worsening of the peak discharge to Rapid Creek and Ironstone and Knuckey Lagoons from pre to post-development with the proposed stormwater infrastructure design. There is also no increase in overall stormwater discharge volumes to Ironstone and Knuckey Lagoons. However there is an overall increase in the discharge volumes to Rapid Creek which has been identified to not cause any worsening at Yankee Weir (Refer to the Berrimah North Stage 2 report prepared by ADG Engineers).

1 INTRODUCTION

ADG Engineers Pty Ltd (Aust) has been engaged by The City of Darwin to undertake an assessment of the required stormwater infrastructure to facilitate the Draft Berrimah North Concept Plan (November 2013) located in Berrimah, Darwin, Northern Territory.

This report was compiled using information from the following sources:

- Site Investigations
- Northern Territory Government Data
- Liaison with the City of Darwin
- Department of Infrastructure
- As constructed Drawings
- Road Network Division
- Land Surface Data from Department of Land and Environment (DLPE) Land Services
- SKM Rapid Creek Flood Study Report and Addendum (December 2013)

1.1 PURPOSE OF REPORT

The purpose of the report is to provide the City of Darwin with a proposed solution that addresses the stormwater drainage infrastructure required to service the Berrimah North Area without worsening the downstream stormwater systems (Marrara Swamp, Rapid Creek and Ironstone and Knuckey Lagoons) and receiving environments.

The following report comprises of:

- Minor storm event analysis (Q2 and Q5), to determine the drainage system required to service the estimated absolute potential development allowed for under the proposed land uses;
- Major storm analysis (Q100) to determine the major system required to ensure stormwater doesn't impact on properties and downstream catchments.

1.2 AREA DETAIL

The proposed developable area is located in the bounds of Amy Johnson Avenue, Stuart Highway, Vanderlin Drive and McMillans Road, Berrimah North within the City of Darwin local government area, herein described as the subject site. The total site area is 307ha. The existing land titles and details are given in Table 1 below.

Table 1- Troperty Detail	
Title	2439 on S 74/012, 5873, 5874 and 5875 on L2006/113, 4106 on S 85/355, 5693, 5694 and 5695 on L2003/067, 5602 on L2002/084B, 5787 on S2002/195, 5628 and 5627 on L2003/051, 2167 on S 75/041, 1908 on S 74/022, 5959 on S2007/216, 4568 on S 95/260, 3391 on S 91/242, 4440 on S 93/196, 4885, 4886, 4887 and 4888 on S 97/180, 4280, 4279, 4278, 4277 and 4303 on LTO 91/074, 3915 on S 85/127, 3071 on S 84/211, 4882 on S

Table 1– Property Detail

BERRIMAH NORTH DRAINAGE STUDY

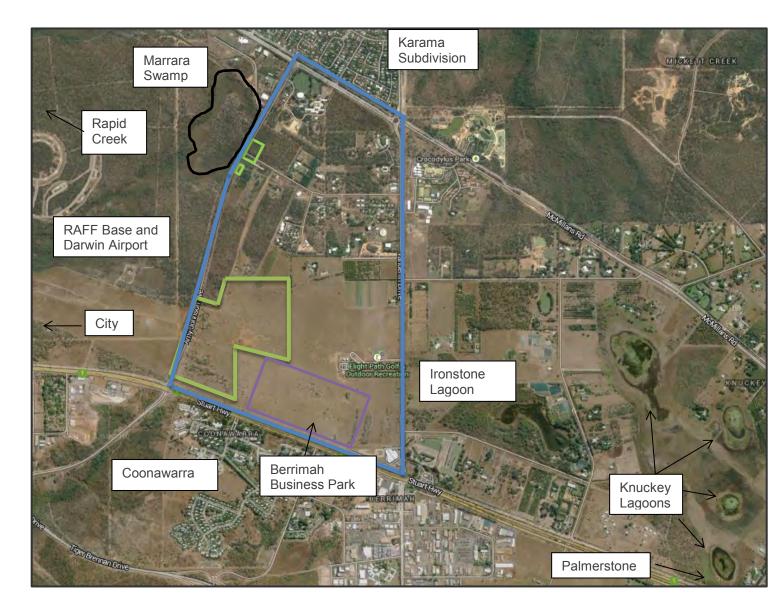
ADG)

Ref: 15988 C R001 Revision 5 19.08.2014.docx August 2014

	96/349B, 2237 on S 79/080, 6467 on LTO 2012/070, 2845 on S 83/179, 6599 on LTO 2012/098A, 4262 S 911035
Street Address	74-110 Amy Johnson Avenue, 564 - 798 Vanderlin Drive, 1-113 Boulter Road, 4-10 Crerar Road, 16- 42 Bowerlee Road, 621 Stuart Highway, BERRIMAH.
Site Area	307ha

A locality map is given below in Figure 1.

Figure 1 – Locality Map (As accessed from Google maps 10.03.2014)


1.3 EXISTING SITE FEATURES

The subject site is predominately undeveloped with areas that are developed consisting of a mix of rural residential, commercial community facilities and utilities. The ground coverage of subject site varies from highly vegetated to bare soil. The existing accesses to the developed lots are via sealed and unsealed rural type roads which connect to Amy Johnson Avenue, Stuart Highway, Vanderlin Drive and McMillian Road. The subject site is relatively flat with an average slope below 1 per cent. There are existing restricted development areas within the site area. These restricted development areas are shown in a green outline in the figure below. The existing site condition of the overall area is presented in Figure 2 below.

Further specific information in terms of existing stormwater drainage features, discharge points and catchment site conditions is explained in sections 1.3.1 - 1.3.12 below. Refer to **Appendix D** for the overall SK02 and SK03- Pre Development Catchment Plan. The existing site condition has

been interpreted using google maps, provided as constructed information and imagery received from Land Information Services.

Figure 2 – Existing Site Condition

1.3.1 Catchment 1

Catchment 1 has existing buildings occupying approximately 15 per cent of the catchment area (refer to the figure on the right). The remainder of the catchment is covered by medium dense bush. There are also rural sealed roads which provide access to the existing buildings. This catchment currently falls to McMillans Road. It has been assumed that the current point of discharge for this catchment is to the drainage swale and Road Network Division (RND) road drainage infrastructure on McMillans Road, shown in green in Figure 3 which ultimately discharges to Rapid Creek.

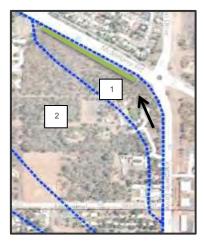


Figure 3 - Catchment 1 Existing Site Condition

1.3.2 Catchment 2

Catchment 2 currently has impervious cover of approximately 20 per cent. These impervious areas are a combination of commercial, Marrara Christian College and rural residential facilities. The remainder of the catchment comprises of predominately medium dense bush with areas of bare soil. This catchment also comprises of a part of Boulter Road which is a sealed rural road. The Catchment currently slopes towards Amy Johnson Avenue and discharges to an existing swale adjacent to Amy Johnson Avenue, ultimately discharging to Rapid Creek. Refer to Figure 4.

Figure 4 – Catchment 2 Existing Site Condition

1.3.3 Catchment 3

Catchment 3 consists of approximately 20 per cent impervious areas, with the remainder of the site comprising of medium dense bush and bare soil areas. This catchment also includes portion of

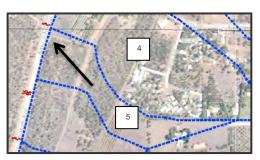
Boulter Road. A restricted development area is located in this catchment and is shown by the green outline in Figure 5. This catchment currently discharges to the existing culverts beneath Amy Johnson Avenue (shown by the red symbol) adjacent to the restricted development area. This culvert drains directly to the Marrara Swamp Area which ultimately discharges to Rapid Creek. A site inspection confirmed that in the restricted development area the culverts are subjected to significant ponding of water during the wet season. Refer to the Site inspection photos 14 and 15 in **Appendix B** which show that the water surface elevation is at obvert level of the culverts. Sketches SK02 and SK03, Pre Development Catchments in **Appendix D** outline the location of the existing drainage easements which form part of this catchment.

Figure 5 – Catchment 3 Existing Site Condition

1.3.4 Catchment 4

The impervious areas of catchment 4 contribute to approximately 20 per cent of the total catchment area. The remainder of the site is made up of medium dense bush, average grassed lawns, cropping/farming areas and bare soil. The catchment also includes road areas including Boulter Road, Crerar Road, Nara Place and other small road accesses. There is also a restricted

development area as part of this catchment shown in the Figure 6. There are currently existing drainage easements in this catchment. Refer to sketches SK02 and SK03 Pre Development Catchments in **Appendix D** for drainage easement locations. The discharge for this catchment is to the existing culverts beneath Amy Johnson Avenue (shown by the red symbol) which discharge directly to the Marrara Swamp and ultimately discharges to Rapid Creek. These culverts also have a water surface elevation at


obvert during the wet season, refer to Appendix B for the site photos12 and 13.

1.3.5 Catchment 5

Catchment 5 is predominately pervious with only 2 small roof areas contributing to the impervious area. The pervious areas comprise of medium dense bush, bare soil, poorly grassed areas and light tree planting. There is one 10m (approx.) wide easement in this catchment which extends off Bowerlee Road to towards Amy Johnson Avenue. Refer to **Appendix D** for the existing easement locations. The site slopes to the west at approximately 0.4 per cent. The discharge point for the catchment is to the existing culvert

beneath Amy Johnson Avenue, shown by the red symbol in Figure 7 which ultimately discharges to Rapid Creek.

Figure 7 – Catchment 5 Existing Site Condition

1.3.6 Catchment 6

There are no impervious areas in catchment 6. The area is made up of medium/ light dense bush and bare soil. The site currently grades to the west on a slope of 0.4 per cent. The discharge point for the catchment is the existing culverts beneath Amy Johnson Avenue and ultimately Rapid Creek.

Figure 8 – Catchment 6 Existing site Condition

1.3.7 Catchment 7

Catchment 7 also has no impervious areas. The pervious areas comprise of bare soil and very light bush cover in a small proportion of the area. The site currently falls to the west at a slope of 0.3 per cent. The discharge point for this catchment is to the existing culvert beneath Amy Johnson Avenue and ultimately Rapid Creek. The catchment also has an area which has been identified as a restricted development area, shown in Figure 9 by the green outline.

Figure 9 – Catchment 7 Existing Site Condition

1.3.8 Catchment 8

Almost the entirety of this catchment is deemed to be a restricted development area (shown by the green outline in Figure 10). The small proportion of the site which is not part of the restricted development area is currently being used as a stockpiling area for the newly constructed Berrimah Business Park. The overall catchment is predominately bare soil with a very light cover of trees to the west. The catchment slopes to the west at approximately 0.3 per cent. The discharge is to the existing culverts beneath Amy Johnson Avenue, shown by the red symbol and ultimately discharges to Rapid Creek.

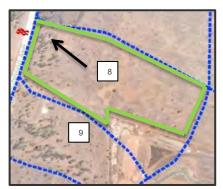
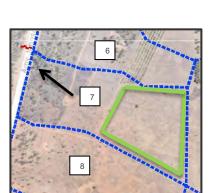



Figure 10– Catchment 8 Existing site Condition

1.3.9 Catchment 9

The majority of this catchment is also deemed to be restricted development area. The remainder of the site is being used as the stockpiling area for the newly constructed Berrimah Business Park. The catchment slopes to the west at 0.7 per cent with a very light cover of trees and bare soils making up the pervious characteristics. The existing discharge point is to the culverts beneath Amy Johnson Avenue and ultimately to Rapid Creek.

Figure 11 – Catchment 9 Existing Site Condition

1.3.10 Catchment 10

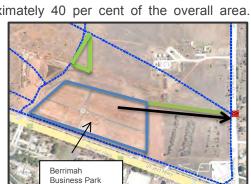
The entirety of the site is deemed to be restricted development area. The catchment is predominately covered with bare soil and slopes to the west at 0.7 per cent. The existing discharge point is to the culverts beneath Amy Johnson Avenue and then drains to the south underneath the Stuart Highway.

Figure 12 – Catchment 10 Existing Site Condition

1.3.11 Catchment 11

Catchment 11 is the largest catchment within the total investigation area. The area is predominately covered by bare soil with areas of light tree coverage. The imperious areas for this catchment contribute to approximately 20 per cent of the total catchment area. The impervious areas include the Power Water Corporation (PWC) Utilities Area and a small mini golf and driving range facility just east of the tank farm. It slopes to the east at 0.3 per cent to the existing culverts beneath Vanderlin Drive into an existing swale which ultimately discharges to Ironstone and Knuckey Lagoons.

Figure 13 – Catchment 11 Existing Site Condition


1.3.12 Catchment 12

Catchment 12's impervious areas contribute to approximately 40 per cent of the overall area.

These impervious areas include roof areas from existing building, road areas and carparking areas. The pervious areas comprise of bare soil and light tree coverage. The site slopes to the east at 0.3 per cent and discharges to the culverts beneath Vanderlin Drive which ultimately discharges to Ironstone and Knuckey Lagoons. The newly constructed Berrimah Business Park (BBP) is within this catchment and includes a swale and culvert design to discharge its stormwater to the Vanderlin Drive culverts. The BBP culvert's intended purpose is to provide a controlled outflow for the BBP development allowing stormwater runoff to be

detained in a constructed swale upstream of the culvert. The Berrimah Business Park occupies approximately 50 per cent of the overall catchment.

Figure 14 – Catchment 12 Existing Site Condition

Shopping Centre

1.4 SURROUNDING LAND USE

The surrounding land use comprises of an array of different uses. The existing land use north of McMillan Road is the Karama urban residential subdivision. East of Vanderlin Drive the existing land use is made up of commercial, rural residential and natural drainage features (Knuckey and Ironstone Lagoons). To the south of Stuart Highway, Coonawarra, the land use is a mix of commercial and urban residential. The RAAF base and Darwin International Airport are located to the west of Amy Johnson Avenue. The majority of the defence area is unused and heavily vegetated with a small percentage of the land used for defence purposes. Also located to the west of Amy Johnson Avenue is the Marrara Swamp.

2 PROPOSED DEVELOPMENT

The Department of Lands, Planning and Environment has prepared a Draft Area Plan for the Berrimah North Area. The intent of this area plan is to distinguish types of zoning for development areas, identify critical infrastructure locations and to provide connectivity to commercial, industrial and residential areas. This plan will facilitate the future development of the Berrimah North Area. The Area Plan has 2 parts. Part 1 identifies the site constraints and strategic infrastructure, Part 2 presents the proposed zoning (refer to **Appendix A**). Section 2.1 below describes the particular areas of the Draft Area Plan for Berrimah North.

2.1 LAND USE PLANNING

Part 1, also shown in **Appendix A** identifies the key site constraints and strategic infrastructure. Below is a summary of the identified site constraints and strategic infrastructure;

- > Australian noise exposure forecast
- Defence regulations no structures and no structure above 7.5m and 15m
- > Overall area catchments and sub catchments
- Discharges to control structure
- Darwin Airport approach splay/public safety area
- Access from arterial road (Boulter Road).

Part 2 of the Draft Berrimah North Area is shown in the **Appendix A**. It can be seen that the proposed land uses are:

- Vrban Residential
- Commercial Purpose
- Rural Residential
- > Open Space incorporating drainage features
- Restricted Development (Airport restriction zone)
- Light industry
- Utility
- Commercial/mix use

The plan also incorporates the following features and services:

Pedestrian/cycleway

- Compact neighbourhood which maximises the number of dwellings within a 400m walk from the neighbourhood centre and a bus stop in this particular area will enable easy access for residents to the public transport corridor proposed for Vanderlin Drive.
- Public transport corridor including bus stops
- Access roads

2.2 OPTIONS, REQUIREMENTS AND OPPORTUNITIES

The Draft Area Plan for Berrimah North allows flexibility for changes to the plan due to drainage restrictions. The topography of the land encompassed in the Berrimah North Area Plan has a slope of approximately 0.3 per cent on average. This very flat slope makes the existing site very difficult to provide a discharge with the current landform. Earthworks design will enable a possible solution to providing the site with stormwater drainage. It is a requirement that the post-development scenario does not adversely affect any of the proposed developable areas or worsen the downstream flood conditions and environmental values. To meet this requirement, changes to the area plan layout are investigated in this report. These changes include using proposed road areas for the location of stormwater drainage infrastructure, using the restricted development areas as detention areas, creating a useable park area, and identifying areas where land resumption is needed to facilitate stormwater drainage.

During detailed design, the earthworks design needs to incorporate consideration of the whole catchment to achieve the desired treatment outcomes due to timing or various infill sites within the Berrimah North Area.

The Berrimah North Area also has considerable opportunities for stormwater drainage. These opportunities include existing stormwater easements which are to be used, redesigned or extended to provide future development flood immunity. Another advantage is that there are many existing open drains, with further formalisation, will provide major drainage infrastructure for the area. There is also an opportunity to provide stormwater quality treatment through the use of vegetated open drains.

3 DATA COLLECTION

A variety of data was collected and used as part of this analysis. The data and sources included:

- Design rainfall for the site based on Australian Rainfall and Runoff (AR & R) and Bureau of Meteorology (BOM) for the site;
- Existing topography for the site and surrounding areas based ESRI Shape Files received from DLPE Land Information Services for the site and surrounding areas;
- Site Inspections (refer to **Appendix B** for the site photos) ;
- Design and as constructed drawings from Department of Infrastructure for Amy Johnson Avenue, Stuart Highway, Vanderlin Drive and McMillans Road;
- Data from the City of Darwin for Infrastructure requirements and standards.

4 MODELLING PROCEDURE

Investigation of flood behaviour through the subject site required analysis and modelling of the catchment and flow path behaviour. This involved:

Hydrologic (Catchment) Analysis, to determine the catchment rainfall-runoff processes to produce peak flows. Hydrologic analysis was completed using data from (AR & R) and BOM.

Hydraulic Modelling Analysis, which is used to simulate the flood behaviour of the subject site to produce flood levels, flow discharges, flow velocities and preliminary detention basin sizes. The model is also used to simulate conveyance to understand how water gets from one point to another. Hydraulic modelling was completed using 2d XP-STORM software.

The steps used in each of these models for flood event simulation are described in the following sections below.

4.1 ASSUMPTIONS

Assumptions that have been made as part of this analysis are included below:

- ADG have interpolated the levels within the existing roads. This was due to the topography information that was provided to ADG omitting the z values within the road reserves;
- The topography data was used to display the flood behaviour in the pre- development model, used for earthworks design and to display the flood behaviour in the post-development model;
- From site investigations it has been assumed that the culverts to the north and south of the Boulter Road – Amy Johnson Avenue intersection have tailwater conditions. The Water Surface Elevation (WSE) is approximately at obvert level. Refer to Appendix B for site photos;
- No special considerations have been included to identify ground water or other subsurface geotechnical impacts on stormwater flow;
- The proposed stormwater infrastructure will be paid for by the property owner/developer in accordance with the developer contribution plans to be developed based on a proportional payment based on lot area;
- No site sourced stormwater treatment has been included;
- The downstream boundary condition has been modelled assuming it is free flowing;
- Entrance and Exit Losses for the existing culverts were assumed to be 0.5 and 1 respectively; and
- The pre development model was calibrated to the Rational Method to ensure the peak flow rates were appropriate.

5 HYDROLOGIC MODELLING

A hydrologic model was created using the XP-STORM software package to provide inflow hydrographs for the 2d component of the hydraulic model. The XP-STORM model represents the sub-areas that contribute to flows across the site and external catchments. The steps involves include:

- Catchment definition;
- Model construction;
- Parameter derivation;
- Simulation of design rainfall events to define critical duration;
- Discharge flows quantified for use in the hydraulic model; and
- The Pre Development Catchment Delineation Plan is shown in **Appendix D**.

5.1 HYDRAULIC MODEL – XP-STORM

A 1d/2d XP-STORM runoff model was created to analyse the pre-development and postdevelopment scenarios. The models include a typical 1d node-link connectivity identifying the catchments and hydraulic parameters. A 2d model to simulate how the runoff enters and surcharges from the 1d network was developed. 2d models show flow in multiple directions on the x-y plane. After calibrating the existing model to acceptable flow rates, based on rational method estimates, the proposed strategy is to reduce all increases of post-development runoff to predevelopment levels.

Global storms were used to run all design storm events within the same model. XP-STORM uses Australian Rainfall and Runoff nomographs with an absolute depth multiplier to produce site specific hydrographs for use within the hydraulic analysis, where:

Depth Multiplier = Rainfall Intensity (mm/hr) x Storm Duration (mins) / 60

5.1.1 XPSTORM Rainfall Parameters

Australian Rainfall and Runoff (AR&R) 1987 Intensity Frequency Duration (IFD) data for the subject site obtained from AusIFD was used for the hydrologic analysis for both the rational method calculations and also for the determination of the XP-STORM absolute depth multipliers. The multipliers were applied to the Zone 4 temporal pattern (applicable to north coast of Australia). **Appendix C** displays tabulated summaries of the adopted rainfall intensities as well as the depth multipliers used for the XP-STORM analysis.

5.1.2 Hydrologic Modelling Assumptions and Methodology

The following assumptions were used to create the XP-STORM Models:

- Two separate models were generated, which were (refer to section 1.3 for the pre- development scenario and section 2 for the proposed post- development scenario):
 - Pre Development; and
 - Post Development.
- Each model included runoff and nodes for each contributing sub-catchment;
- The sub-catchment areas were split into 0% impervious and 100% impervious areas to best replicate the site runoff using the Laurenson Method within the XP-STORM model;
- The method of infiltration chosen for this model was Uniform Loss which was applied to the pervious areas of the sub-catchments;
- After calibrating the pre-development model to rational method estimates, the adopted pervious area losses ranged from 0 mm-5mm initial and from 0-0.5mm/ha (absolute) continuing (refer to section 5.3 for further details); and
- The models were run at various durations for a constant ARI to determine the critical storm event. A critical storm event is best described as the storm duration for which each catchment or majority of catchments have the highest peak flow. For this site the critical storm was the 25 minute duration storm event. It should be noted that not all of the catchments highest peak was during the 25 minute storm event. However the 25 minute storm event was chosen because a vast majority of the catchments did show the highest peak during this event.

5.2 DESIGN FLOW VERIFICATION

A comparison between the peak discharge values obtained for the 1 in 100 ARI storm event using the Rational Method and the XP-STORM pre-development model is contained in the table below. It can be seen below the peak discharges generated by the XP-STORM model are within a 10 per cent difference to the values obtained from Rational Method calculations and are therefore considered appropriate for subsequent hydraulics analysis.

Pre- Development					Post-Development			
Event	Catch ID	Rational Method (m³/s)	XP STORM (m³/s)	Difference (%)	Catch ID	Rational Method (m ³ s)	XP STORM (m³/s)	Difference (%)
	1	3.095	3.132	-1.187	1	3.253	3.244	0.291
	2	15.114	15.844	-4.833	2	10.603	9.596	9.499
	3	6.600	6.755	-2.34	3	7.931	7.315	7.763
	4	10.900	10.794	0.974	4	14.448	14.251	1.363
	5	5.106	4.882	4.380	5	12.567	12.510	0.526
1 in 100	6	5.678	5.688	-0.173	6	6.254	6.381	-3.792
Year ARI	7	6.270	6.156	1.813	7	7.033	7.337	-4.324
	8	8.198	7.786	5.027	8	8.354	8.059	5.201
	9	5.316	5.137	3.373	9	5.462	6.087	3.778
	10	2.299	2.334	1.509	10	2.224	2.422	-8.888
	11	28.359	29.222	-3.045	11	36.169	35.912	8.025
	12	19.528	18.600	4.753	12	17.189	18.541	-7.865

Table 2 – 1 in 100 year ARI Rational Method vs XP-STORM Generated Peak Discharges

5.3 CALIBRATION

The 1d/2d XP-STORM model calibrations were carried out by using the peak flows calculated by the rational method. The calibration of the model was updated by adjusting the Manning's 'n' roughness values of the impervious and pervious areas. The losses in the pervious infiltration characteristics were also adjusted to best replicate the flows calculated by the rational method.

The table below shows the values adjusted in the model to reach appropriate calibration.

Ref: 15988 C R001 Revision 5 19.08.2014.docx August 2014

Table 3 – Pervious Infiltration Calibration

Pre	Manning's '	n' (pervious)	Losses (pervious)		
Development Catchment	Impervious	Pervious	Initial	Continuing	
1 -12	0.2	0.0275	5	0.5	

The 1D/2D XP-STORM Model's impervious infiltration parameters were set to 0 for initial and continuing losses.

6 HYDRAULIC MODELLING

To assess flooding characteristics on and adjacent to the site, a 1D/2D XP-STORM model was established. XP-STORM is capable of simulating flow for both small and large study areas using both 2-dimensional and 1-dimensional flow based on the topographic condition of the study area.

A 2d model conveys water by demonstrating how water moves over land and how it interacts with its terrain as well as the existing system. It is essential in protecting lives, homes and businesses. An advantage of using a 2d XP-STORM model is that the flood water can be simulated in any direction within an x-y plane.

6.1 Model Setup

The hydraulic model simulates the dynamic flooding behaviour along the river, minor streams and the floodplain. Setting up the hydraulic model involved:

- Allocation of model boundaries;
- Design the node link node network (1D) including culverts, subsurface pipes and open drainage channels;
- Development of a cross-section database for channel flows; and
- Application of appropriate surface friction (Manning "n").

Topography data of the site and surrounding area provided by DLPE was utilised to create the Digital Elevation Model (DEM) required for XP-STORM modelling of the existing scenario. A grid of 2m was used for modelling to best simulate the topographical condition of the site and increase the accuracy of the model results. The post-development DEM was generated from the preliminary earthworks design for the post-development scenario described in section 6.3.

6.1.1 Manning's Coefficient

Based on recommendations from Australian Rainfall and Runoff (AR and R) Book VII Section 1 Aspects of Hydraulic Calculations, orthographic photos and a site inspection, Manning's "n" was applied for the following areas shown in the table below.

AREA	MANNINGS (n)
Developable Lots	0.02
Open Drainage Channels	0.045
Road	0.014

T	able	4 –	Man	ning's	Table

6.1.2 Inflow Locations

The inflow was modelled in XP-STORM using the hydrology model and inputting the impervious and pervious areas of each catchment. The details of each inflow were presented in Section 5 and the inflow locations for pre and post – development are given in **Appendix J**.

6.1.3 Downstream Boundary Condition

From information obtained during site inspections, the following downstream boundary conditions were determined.

- The culverts north and south of Boulter Road showed a water level to be at the obvert of the culverts (refer to site inspection pictures 12-15 in **Appendix B**). This existing water level will significantly affect the hydraulic grade line of the upstream stormwater drainage infrastructure.
- The remaining culverts beneath Amy Johnson Avenue had no ponding therefore they were assumed to be free flowing. The downstream boundary condition was calculated by the model using the ground slope and roughness at the downstream boundary location.
- Sinclair Knight Merz (SKM) carried out a Flood Study for the Rapid Creek Catchment Area which part of the Berrimah North Area Plan contributes to. The discharge from the Berrimah North Area discharges to the Marrara Swamp and RAAF Base, which then flows via the Flood Control Weir into Rapid Creek. The intent of the Berrimah North discharge is not to worsen the Flood levels outlined in the SKM report.

6.2 Existing Scenario

The existing scenario for the subject site was analysed for a 1 in 100 ARI storm event. The subject site does not have any external catchments. Refer to **Appendix D** for further details of the pre development catchments. The following sections show and discuss the results of the pre-development scenario hydraulic analysis.

6.2.1 Amy Johnson Avenue Culverts

The existing culverts beneath Amy Johnson Avenue have been included in the model. Details of these culverts were obtained from drawings R82-1145 to R82-1172 (1982) completed by the Department of Transport and Works, and are provided in the table below. The culvert details are also shown on the drawings in **Appendix D**.

The culverts are the Boulter Road – Amy Johnson Avenue intersection have a water surface elevation at obvert of the culverts.

BERRIMAH NORTH DRAINAGE STUDY Ref: 15988 C R001 Revision 5 19.08.2014.docx

August 2014

Upstream Downstream Manning's Length Slope Entrance Exit Name Size (mm) Invert Invert (%) Loss Loss (m) (n) (mAHD) (mAHD) 6/1200x900 CH700 28.00 0.014 27.83 21.96 0.81 0.5 1 RCBC 6/1200x600 CH775 28.00 27.80 21.96 0.014 0.9 0.5 1 RCBC 2/1200x450 0.014 CH1100 30 70 30 60 14.64 07 05 1 RCBC 4/1200x450 CH1350 32.70 0.014 32.80 14.64 0.7 0.5 1 RCBC 2/1200x450 CH1700 33.70 33.60 14 64 0 0 1 4 07 0.5 1 RCBC 4/1200x450 CH1925 0.014 34.20 34.10 14.64 0.7 0.5 1 RCBC 1/1200x450 CH2325 34.60 34.50 15.86 0.014 0.6 0.5 1 RCBC 3/1200x450 CH2516 31.20 30.60 34.16 0.014 1.7 0.5 1 RCBC

Table 5 – Amy Johnson Avenue Culvert Details

6.2.2 Vanderlin Drive Culvert

The existing culvert configurations beneath Vanderlin Drive have been included in the model. Some of the details of these culverts have been taken from Gilbert and Associates Consulting Engineers design drawings and the remainder of the details where estimate from existing ground levels. The details of the culvert that were used in the model are shown in the table below. The culvert details are also shown on the drawings in Appendix D.

Name	Size (mm)	Upstream Invert (mAHD)	Downstream Invert (mAHD)	Length (m)	Manning's (n)	Slope (%)	Entrance Loss	Exit Loss
Vanderlin Drive	8/1200x600 RCBC	34.235	34.1	14.6	0.014	0.92	0.5	1

Table 6 - Vanderlin Drive Culvert Details

6.2.3 Internal Existing Culverts

There are two existing culverts within the subject site's boundary. One of these culverts is part of the stormwater drainage infrastructure for the Berrimah Business Park (BBP) and is upstream of the culvert beneath Vanderlin Drive. Details of this culvert were taken from drawing 22115_501designed by Gilbert and Associates Consulting Engineers. The other culvert is located upstream of the culvert beneath Vanderlin Drive and downstream of the Berrimah Business Park culvert. The details of this particular culvert are unknown and the details have been assumed to be the same as the BBP culvert upstream. The details of these culverts which were used in the model are shown in the table below. The culvert details are also shown on the drawings in Appendix D.

Ref: 15988 C R001 Revision 5 19.08.2014.docx August 2014

Table 7 – Internal Culvert Details

Name	Size (mm)	Upstream Invert (mAHD)	Downstream Invert (mAHD)	Length (m)	Manning's (n)	Slope (%)	Entrance Loss	Exit Loss
BBP Culvert	3/1200x600 RCBC	34.63	34.65	16.6	0.014	0.1	0.5	1
Unknown Culvert	3/1200x600 RCBC	33.8	33.78	16.6	0.014	0.1	0.5	1

The BBP culvert's intended purpose is to provide a controlled outflow for the BBP development allowing stormwater runoff to be detained in a constructed swale upstream of the culvert.

6.2.4 Existing Scenario Flooding and Flow Results

Hydraulic analysis of the site in its existing condition was undertaken to establish and quantify existing flooding patterns and behaviour. Key model outputs characterising flood behaviour include flood level, WSE, discharges and velocities and functions as a function of time for that given flood event. Modelling results for the existing site have been presented in the following:

- The table below lists the existing flood levels for various points during the 1 in 100 year ARI storm events. The locations of these points are shown in **Appendix E**; and
- The existing extent of flooding within the site of the 1 in 100 year ARI storm event is presented in **Appendix E.**

The flood extents displayed are predominately in the area closest to Amy Johnson Avenue where the site slopes to its lowest points. There is flooding around and on the downstream side of the existing culverts beneath Amy Johnson Avenue. Catchments 11 and 12 slope to the east towards Vanderlin Drive and **Appendix E** shows that there is also existing flooding in this area.

The existing scenario model shows that there is some flooding on Amy Johnson Avenue. Flows in a 1 in 100 ARI overtop the road predominately in the area around the Boulter Road – Amy Johnson Avenue adjacent to Marrara Swamp in the order of approximately 0.25 – 0.5 meters. Vanderlin Drive also experiences overtopping in the pre-development case in the order of 0.25 -0.3 meters.

Ref: 15988 C R001 Revision 5 19.08.2014.docx August 2014

	Point Location	Existing Q ₁₀₀ Peak Water Surface Elevation (m AHD)	Existing Q ₁₀₀ Flood Velocity (m/s)
	1	34.385	0.098
	2	33.294	0.717
	3	31.263	0.101
	4	29.861	0.341
	5	30.963	0.239
1 in 100 Year	6	35.093	0.325
ARI	7	35.339	0.308
	8	30.472	0.622
	9	30.608	0.779
	10	32.187	0.399
	11	29.427	0.00
	12	35.044	0.019

Table 8 – Existing Peak Flood Levels and Velocities

Table 9 – Existing Peak Flows

	Flow Line	Existing Q ₁₀₀ Flood Flow (m ³ /s)
	1	3.286
	2	65.294
1 in 100 Year ARI	3	35.182
	4	70.755
	5	34.535

The abovementioned Point and Flow Line locations are displayed in **Appendix E**. These Points and Flow Lines provide a way to compare flood depths, flow and velocities in particular areas for interest. The post-developed data for the selected points and flow lines are discussed in Section 6.3.8 and a full comparison between the existing and post-developed scenario is discussed in Section 7.

6.3 Post-Developed Scenario

The post-developed scenario required the proposed area plan layout to be investigated for impacts on neighbouring properties upstream and downstream. To determine the impacts of the proposed area plan on the hydraulics of the catchment, ADG have firstly prepared a preliminary earthworks design surface of the post-developed scenario utilising the 3d modelling program 12d. The earthworks design has been prepared to ensure negligible impacts to the hydraulics of the development, further details of the preliminary earthworks are provided within **Appendix F**. The design used minimum grades to achieve a free draining surface. As **Appendix F** shows the preliminary earthworks design was carried out only in areas in which fill was required to ensure a free draining surface was possible. Additional earthworks will be required beyond what is nominated in this report, only the areas required to be adjusted to suit catchment requirements were modelled. The post development hydraulic model was prepared from the 12d design surface and existing surface obtained from Land Information Services. The following sections discuss the works required as part of the proposed development. There are no proposed upgrades of the existing culverts beneath Amy Johnson Avenue. Refer to **Appendix G** for the Post Development Catchment Plans.

6.3.1 Selection Criteria for Treatment Options

Taking into consideration the natural topography, site constraints, downstream boundary conditions and environmental values of the site, the following criteria was used for the selection of the treatment options:

- No worsening of downstream flood extents;
- Maintaining environmental values;
-) Use of Crown Land;
- Access;
- Construction Feasibility;
- Total catchment treatment;
- > Over sizing of treatment devices to compensate for untreated areas.

6.3.2 Selection Criteria for Treatment Locations

Taking into consideration the natural topography, site constraints, downstream boundary conditions and environmental values of the site the following criteria was used for the selection of the treatment locations:

- Maintaining the largest developable area outside of the designated open space areas and restricted development area;
- Ensuring the hydraulic grade line of the existing culverts beneath Amy Johnson Avenue remains unchanged by any proposed drainage infrastructure;
- Minimal interference with existing developments; and
- Incorporation of proposed development schemes within the area plan.

6.3.3 Overall Drainage Network

The flat topography of the site and the water surface elevation at obvert of the culverts in some places makes for a challenge to implement conventional pit and pipe drainage throughout the entire area. To provide feasible and constructable drainage network, a combination of underground pipes with kerb and channel road reserve for overland flow, open channels, detention basins and internal access crossing culverts were designed. The following sections describe these networks in further detail. Refer to **Appendix H** for the overall drainage network and specific catchment drainage networks.


6.3.4 Pipe Network

It is proposed that the stormwater runoff, where the existing topography allows it, will be piped to the detention basins. This pipe network will be located beneath the existing proposed roads of the Berrimah North Area Plan. The road reserve in these areas will have kerb and channel and provide a major storm event overland flow path. The Manning's roughness value of the roads has been modelled as 0.014. The proposed pipe network and properties are shown in **Appendix H**.

6.3.5 Conveyance Channels

It is proposed that the remainder of the site in which stormwater flows cannot be diverted to a pipe network, will be conveyed via an open drainage channel. The newly proposed channels and formalisation of existing channels will ensure that the majority of stormwater flows are directed to detention basins and then to the existing culverts beneath Amy Johnson Avenue. These open channels will also provide detention by using a gabion wall to only allow low flows through the channel until a depth of 200mm. The height of the gabion wall will allow all Q2 and Q5 flows through. Refer to **Appendix K** for the typical sections of the open drains. The typical section also shows that the open channel will be concrete lined in the low flow section and vegetated with grass in the remainder of the channel. This design provides the opportunity to provide stormwater quality treatment by stripping nutrients from the stormwater runoff. The Manning's roughness value through the channels has been modelled as 0.045 representing a landscaped surface through the channel. The proposed channels are shown in **Appendix H** and the properties are shown in the table below.

The safety constraints of all open drainage needs to be considered during detailed design, the table below identifies that the designed channels are in accordance with the criteria of velocity not exceeding 2m/s and the d-v product not exceeding 0.4.

Ref:	15988	C R001	Revision	5	19.08.2014.docx
					August 2014

Tuk										
Name	Base Width (m)	Channel Depth (m)	Batter Slope (1:x) RHS	Batter Slope (1:x) LHS	Manning's	Freeboard (m)	Velocity (m/s)	D-V Product		
Swale 1- 3, 23-24	1.5	0.4	4	4	0.045	0.210-0.570	0.96	0.4		
Swale 4- 7, 13, 16- 18, 25	1.5	0.4	6	4	0.045	0.190-0.730	0.94	0.37		
Swale 8- 11, 14, 26	1.5	0.4	4	6	0.045	0.00-0.990	0.94	0.37		
Swale 19	1.5	0.3	4	4	0.045	0.00	0.82	0.24		
Swale 20, 22	1.5	0.3	6	4	0.045	0.210-0.380	0.8	0.24		
Swale 21	1.5	0.3	4	6	0.045	0.370	0.8	0.24		

Table 10 – Channel Parameters

6.3.6 Internal Road Crossings

A preliminary design consideration has been given to how the area plan will provide connectivity with the proposed drainage infrastructure. Culverts and road heights have been designed to allow for flood free access. New stormwater access easements will be required to improve property access and maintenance. Preliminary sizing of the culverts and road heights to convey the flow from each area in the area plan are shown in the table below. The culvert locations are also shown in **Appendix H.**

Ref: 15988 C R001 Revision 5 19.08.2014.docx August 2014

Table 11 – Internal Road Crossing Culvert Details									
Name	Size (mm)	Upstream Invert (mAHD)	Downstream Invert (mAHD)	Length (m)	Manning's (n)	Slope (%)			
CC 1	600 x 600 RCBC	31.8	31.5	28.5	0.014	1.05			
CC 2	600 x 600 RCBC	31.2	30.7	31.36	0.014	1.59			
CC 3	900 x 600 RCBC	32.4	32.27	39.44	0.014	0.33			
CC 4	600 x 600 RCBC	33.08	32.87	41.72	0.014	0.5			
CC 5	600 x 600 RCBC	34.11	33.87	49.24	0.014	0.5			
CC 6	600 x 600 RCBC	35.42	35.26	31.12	0.014	0.5			
CC 7	600 x 600 RCBC	36.46	36.30	32.06	0.014	0.5			
CC 8	600 x 600 RCBC	36.36	36.13	46.02	0.014	0.5			
CC 9	600 x 600 RCBC	33.35	32.0	36.05	0.014	3.76			
CC 10	600 x 600 RCBC	34.05	33.56	38.22	0.014	1.29			
CC 11	600 x 600 RCBC	36.46	36.30	32.06	0.014	0.5			
CC12	600 x 600 RCBC	36.36	36.13	46.02	0.014	0.5			

Table 11 - Internal Road Crossing Culvert Details

6.3.7 Detention Basins

The detention basins have been designed to mitigate flows through the site. Due to the area constraints the basin sizes below take into consideration the stormwater runoff which will be detained in the open drains as discussed above in section 6.3.5. It is assumed the minor event will be piped or conveyed by channels to the detention basin and flows from greater intensity events up to and including the 1 in 100 year ARI event will flow towards the basins by a combination of piped and overland flow. Using an iterative approach, the basin outlets were sized to ensure discharge from the proposed detention basins was less than or equal to the pre-development flow rates. The Q100 storage volumes for each of the modelled detention basins are presented in Table 12.

Ref: 15988 C R001 Revision 5 19.08.2014.docx August 2014

	Table 12 – Detention	Table 12 – Detention Basin Volumes and Water Levels										
Name	Design Storm (ARI)	Detention Volume (m³)	Water Elevation Depth (m)	Freeboard to Crest of Basin (m)								
Basin 1	100	1554	0.447	0.122								
Basin 2	100	205	0.312	0.39								
Basin 3a	100	2500	0.856	0.318								
Basin 3b	100	2000	0.815	0.430								
Basin 4	100	5106	0.554	0.32								
Basin 5	100	5290	0.110	0.34								
Basin 6	100	17750	1.372	0.6								

Table 13 – Detention Basin Outlet Configuration

Basin Description	Outlet from Basin	Emergency Overflow Weir
Basin 1	375mm RCP or equivalent orifice	5m wide at 0.5m above basin invert
Basin 2	375mm RCP or equivalent orifice	5m wide at 1m above basin invert
Basin 3a	375mm RCP or equivalent orifice	5m wide at 0.6m above basin invert
Basin 3b	375mm RCP or equivalent orifice	4m wide at 0.4m above basin invert
Basin 4	375mm RCP or equivalent orifice	10m wide at 1.4m above basin invert
Basin 5	375mm RCP or equivalent orifice	5m wide at 0.2m above basin invert
Basin 6	225mm RCP or equivalent orifice	5m wide at 1.1m above basin invert

The above design is preliminary only and is subject to detailed design.

The proposed detention basins successfully mitigate the post-development flows to below predevelopment conditions at the culverts beneath Amy Johnson Avenue. For more information refer to Section 6.2.

6.3.8 Post Development Scenario Results

Key model characterising flood behaviour include flood level as a function of time for a given flood event. The flood levels and discharges upstream and downstream of the subject site, incorporating the proposed development, were determined using XP-STORM. Modelling results for the post developed site have been presented in the following:

- Appendix I presents the Post-Development Model Key Features of the XP-STORM hydraulic model;
- The tables below list the mitigated post development flood levels, velocities and flows during the 1 in 100 year ARI storm event.

Storm Event	Name	Developed Q ₁₀₀ Peak Water Surface Elevation (m AHD)	Developed Q ₁₀₀ Flood Velocity (m/s)
	1	34.366	0.057
	2	33.181	0.00
	3	31.264	0.021
	4	27.995	0.493
	5	30.879	0.00
1 in 100 Year	6	34.752	0.00
ARI	7	35.34	0.202
	8	30.61	0.913
	9	30.925	0.012
	10	32.71	0.477
	11	29.008	0.756
	12	35.046	0.060

Table 14– Post-Development Flood Levels, Velocities and Flow

Table 15 – Post-Development Flows

	Flow Line	Developed Q ₁₀₀ Flood Flow (m ³ /s)
	1	0.00
	2	63.576
1 in 100 Year ARI	3	29.914
	4	41.361
	5	69.502

The inundation map for the Post-Development 1 in 100 year ARI storm event is included in **Appendix I.**

7 IMPACT ASSESSMENT

Tabulated data analysis was performed to determine the impacts of the proposed development. Flood level afflux was investigated and is discussed in the following sections.

7.1 Peak Flood Levels

7.1.1 Impact Assessment

The table below presents the results of the flood level afflux, which indicates there are areas where the flood levels and velocities have increased. The flood level increases discussed below do not impact existing properties. Points 4, 8, 9, 10 and 11 are all within the subject site. Post Development results include the effects of the proposed open drains and pipe network identified in the Section above.

A summary of the afflux results include:

- A change in elevation exceeding 0.5m at Point 10 in a 1 in 100 year ARI storm event correlates with a low area the north western corner of the existing school. This is due to the fact that Point 10 is located on the existing sports fields which are in a low laying area. There is no impact on existing properties caused by this increase;
- Points 8 and 9 have a change in elevation of 0.14 and 0.32m respectively from pre to postdevelopment because these points are located within the restricted development area at the end of Boulter Road associated with the Marrara Swamp and due to the increased flows from development the redistricted development area acts as a natural detention area. There is no impact on existing properties caused by this increase;
- The increase in velocities at Points 4, 8, and 11 were expected due to the large catchment area to be collected via the proposed open drain adjacent to Boulter Road. This increase will not cause any impact on existing properties. The velocity increase at Point 10 s located in the existing sports field and does not impact existing developments; (Refer to Appendix I for Q100 Flood Extents)

The negative values shown in the table below represent that the post- development water surface elevation and velocities are less than that of the pre- development scenario.

Overall the table below shows that the post-development flows have been mitigated.

Storm	Point	Q ₁₀₀ Peak Water Surface Elevation (m AHD)			Flood Velocity (m/s)	Water surface	Water Velocity
Event	Foint	Existing	Post Development	Existing	Post Development	Elevation Afflux (m)	Afflux (m/s)
	1	34.385	34.366	0.098	0.057	-0.019	-0.041
	2	33.294	33.181	0.717	0.00	-0.113	-0.717
	3	31.263	31.264	0.101	0.021	0.001	-0.080
	4	29.861	27.995	0.341	0.493	-1.866	0.152
	5	30.963	30.879	0.239	0.00	-0.084	-0.239
1 in 100	6	35.093	34.752	0.325	0.00	-0.341	-0.325
Year ARI	7	35.339	35.34	0.308	0.202	0.001	-0.106
	8	30.472	30.61	0.622	0.913	0.138	0.291
	9	30.608	30.925	0.779	0.012	0.317	-0.767
	10	32.187	32.71	0.399	0.477	0.523	0.078
	11	29.427	29.008	0.701	0.756	-0.419	0.055
	12	35.044	35.046	0.057	0.060	0.002	0.003

7.2 Peak Discharge at Lawful Point of Discharge

A comparison of pre-development peak discharge and post-development discharge at the nominated Flow Lines are shown in the table below. The pre-development peak discharges are maintained for the 1 in 100 year ARI storm event at four of flow lines.

Event	Flow Line	Pre Q₁₀₀ Peak Discharge (m³/s)	Post Q₁₀₀ Peak Discharge (m³/s)	Afflux (m³/s)
1 in 100 year ARI	Flow Line 1	3.286	0.00	-3.286
	Flow Line 2	65.294	63.576	-1.718
	Flow Line 3	35.182	29.914	-5.268
	Flow Line 4	70.755	69.502	-1.253
	Flow Line 5	34.535	41.361	6.836

Table 17 - Existing and Post-Development Peak Discharge and Affluxes

Table 17 above shows that there is an overall decrease in flows for the post-developed scenario at Flow Lines 1-4. Flow line 5 however shows an increase this increase in flow is because the flow line is positioned within the site before the detention basin for that particular catchment. The overall discharge point for the eastern side is Flow Line 3 and it shows an overall decrease in flow. Therefore the increased flow at Flow Line 5 is not causing any damage to existing properties and is mitigated once the flow reaches the detention basin.

As assessment has also been carried out to check the overall volumes discharging to Ironstone and Knuckey Lagoons and there was found to be no worsening in the overall discharging volumes.

An increase in the volume of stormwater discharging from the Berrimah North Area is expected in developed areas because of the increase in impervious areas reducing the amount of runoff that can be infiltrated.

Due to the Knuckey Lagoons being a sensitive receiving environment with limited storage capacity it was determined through liaison with key stakeholders that directing part of Catchment 11 towards Rapid Creek would decrease the overall volume discharging to the Lagoon Area.

8 ALTERNATIVE SOLUTIONS

There are possible alternative solutions which could provide a feasible option to address stormwater drainage in the Berrimah North area. These options include:

- Site specific treatment instead of catchment wide basins. This would include each owner/developer to provide detention for their site.
- Over sizing the detention basins in appropriate locations to compensate for the non-treatable areas.

9 DEVELOPER CONTRIBUTION

In order to provide stormwater drainage infrastructure to the area within the Berrimah North Area Plan a Developer Contribution Plan will be implemented. The Berrimah North Area has been broken into 9 separate developer contribution plan areas. The developer contribution plan will

ensure that all lots with the same discharge point will contribute to the associated stormwater infrastructure in its' specific catchment.

The initial Developer Contribution Plan's costing details are located in **Appendix L** and a summary of the preliminary costs per hectare for stormwater drainage infrastructure is shown below in Table 18.

It is expected that the City of Darwin will finalise the Contribution Plan for the Berrimah North Area and include various other influencing factors. The Catchment areas were derived by delineating the areas associated with a single point of discharge.

	Summary of Costs		
Area	Contribution (\$/ha)		
Overall	\$11,161.21		
1	\$13,404.78		
2	\$9,811.03		
3	\$10,051.34		
4	\$6,854.15		
5	\$3,547.10		
6	\$9,719.24		
7	\$10,896.81		
8	\$2.20		
9	\$1,617.00		
* includes undevelopable area			

Table 18 – Summary of Developer Contribution

10 CONCLUSION

This study has reviewed the hydrology and hydraulics of the site for pre and post- development scenarios and investigated the impact of the proposed development on upstream and downstream properties. This study has looked at the impact of filling the site to allow for the proposed development areas and other minor drainage through the site.

Based on this study the following conclusions have been drawn;

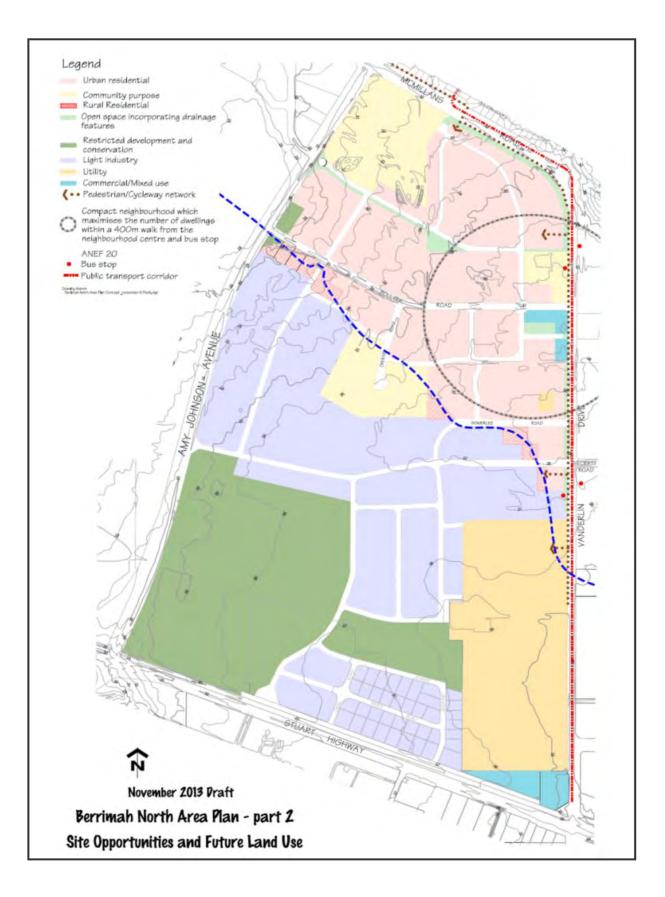
No external catchments;

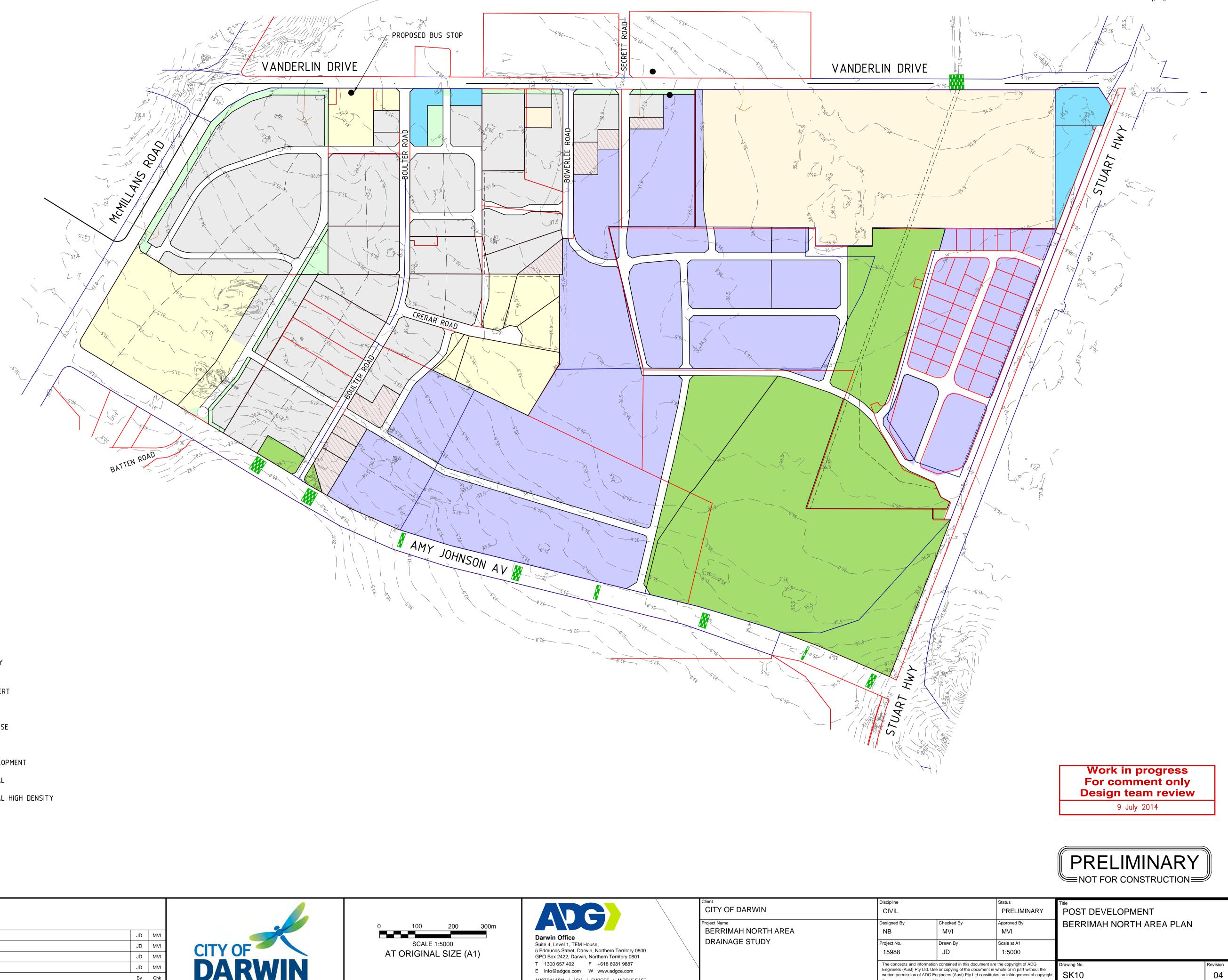
- All of the minor afflux is considered to be within modelling tolerances and is not likely to cause any damage to existing properties;
- Stormwater infrastructure is required to mitigate the post-development flows.

In summary,

The proposed area plan for Berrimah North will not have adverse impacts on downstream Marrara Swamp, RAAF Base/Darwin Airport and Rapid Creek or Ironstone and Knuckey Lagoons. However, significant earthworks design is required to ensure free surface drainage from future developments within the Berrimah North Area Plan.

The proposed layout and infrastructure nominated in this report is a first iteration showing the feasibility of development in the area. Variations to the road alignments, open channel drain configurations, inclusions of stormwater improvement devices and changes to the development plan can all be configured and included in future revisions of this hydraulic model and report.




Appendix A Berrimah North Area Plan (November 2013)

<u>LEGEND</u>

 12.0	

EXISTING LOT BOUNDARY EXISTING EASEMENT BOUNDARY EXISTING SURFACE CONTOURS EXISTING STORM WATER CULVERT PROPOSED COMMERCIAL PROPOSED COMMUNITY PURPOSE PROPOSED LIGHT INDUSTRY PROPOSED RESTRICTED DEVELOPMENT PROPOSED URBAN RESIDENTIAL PROPOSED URBAN RESIDENTIAL HIGH DENSITY PROPOSED UTILITIES PROPOSED OPEN SPACE

04	30.05.14	Issued for Information	JD	MVI
04	21.05.14	Issued for Information	JD	MVI
02	08.04.14	Issued for Information	JD	MVI
01	11.03.14	Issued for Information	JD	MVI
Rev	Date	Description	Ву	Chk

0	100	200	300m
	SCALE	1:5000	
ΔΤ		I SIZE (A	11

AUSTRALASIA / ASIA / EUROPE / MIDDLE EAST

CIVIL	
 Designed By	Checked By
NB	MVI
Project No.	Drawn By
15988	JD
The concepts and informatior Engineers (Aust) Pty Ltd. Use written permission of ADG Er	e or copying of the
Do not scale drawings. If	in doubt, ask!

Appendix B Site Photos

Figure 15 – Photo 1

Figure 16 – Photo 2

Figure 17 – Photo 3

Figure 18 – Photo 4

Figure 19 – Photo 5

Figure 20 – Photo 6

Figure 21 – Photo 7

Figure 22 – Photo 8

Figure 23 – Photo 9

Figure 24 – Photo 10

Ref: 15988 C R001 Revision 5 19.08.2014.docx August 2014

Figure 25 – Photo 11

Figure 26 – Photo 12

Ref: 15988 C R001 Revision 5 19.08.2014.docx August 2014

Figure 27 – Photo 13

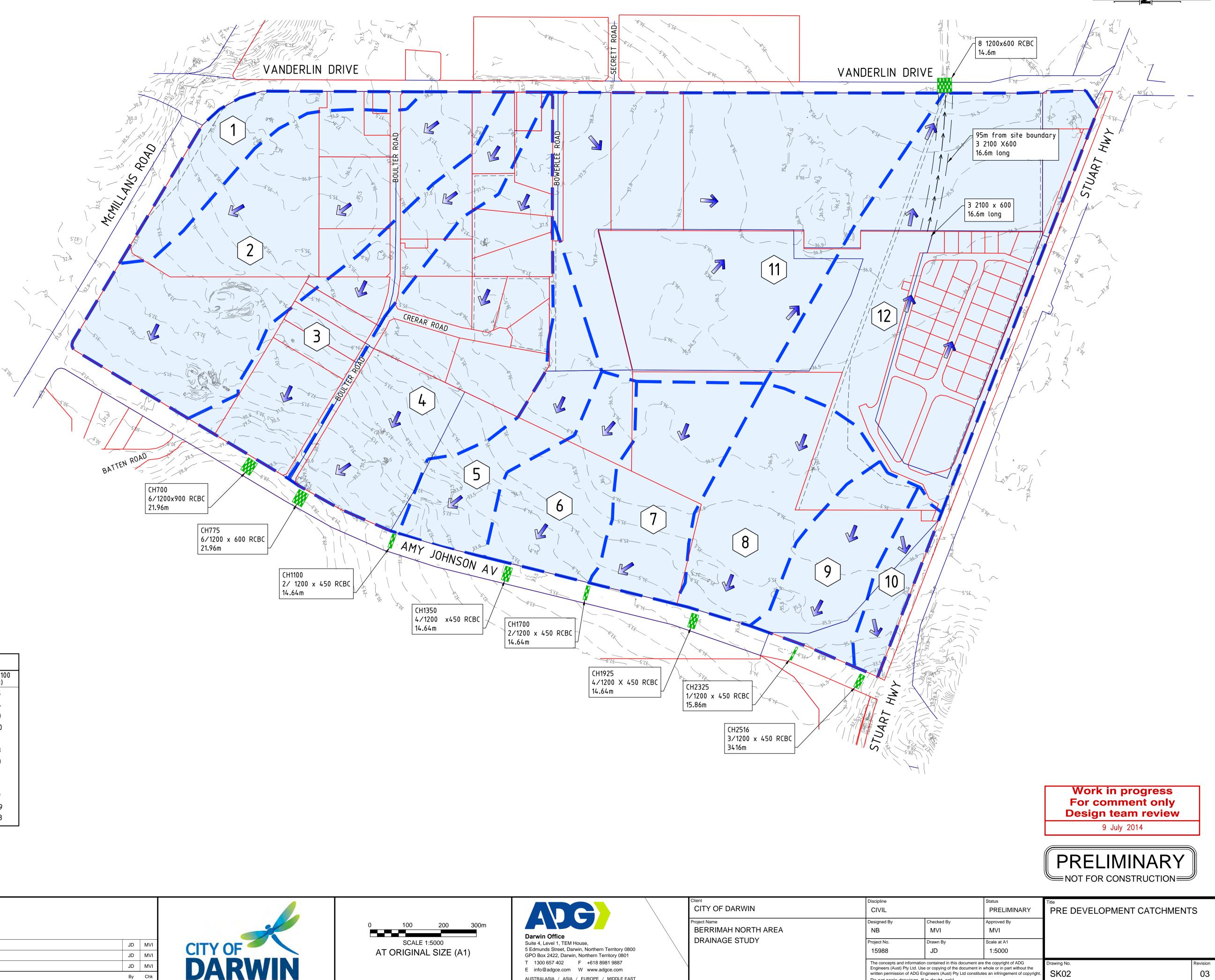
Figure 28 – Photo 14

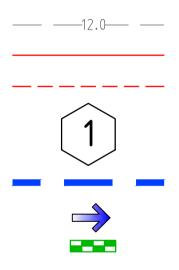
Ref: 15988 C R001 Revision 5 19.08.2014.docx August 2014

Figure 29- Photo 15

Appendix C XP-STORM Rainfall Parameters

Table 19– Adopted Intensity Frequency Data (mm/hr)


Storm		Av	erage Rec	urrence In	terval (Yea	rs)	
Duration (mins)	1	2	5	10	20	50	100
15	98	123	148	163	185	215	238
20	86	108	130	143	162	188	208
25	77	97	117	128	145	168	186
30	70	89	106	117	133	154	170
45	57	72	86	95	107	124	137
60	48.5	61	73	81	91	106	117
90	36	45.5	55	60	68	79	88
120	29.1	36.7	44.2	48.7	55	64	71
180	21.4	27.1	32.6	36	40.9	47.4	53
270	15.7	19.9	24.1	26.6	30.2	35.1	38.9


Storm	Average Recurrence Interval (Years)							
Duration (mins)	1	2	5	10	20	50	100	
15	24.5	30.8	37.0	40.8	46.3	53.8	59.5	
20	28.7	36.0	43.3	47.7	54.0	62.7	69.3	
25	32.1	40.4	48.8	53.3	60.4	70.0	77.5	
30	35.0	44.5	53.0	58.5	66.5	77.0	85.0	
45	42.8	54.0	64.5	71.3	80.3	93.0	102.8	
60	48.5	61.0	73.0	81.0	91.0	106.0	117.0	
90	54.0	68.3	82.5	90.0	102.0	118.5	132.0	
120	58.2	73.4	88.4	97.4	110.0	128.0	142.0	
180	64.2	81.3	97.8	108.0	122.7	142.2	159.0	
270	70.7	89.6	108.5	119.7	135.9	158.0	175.1	

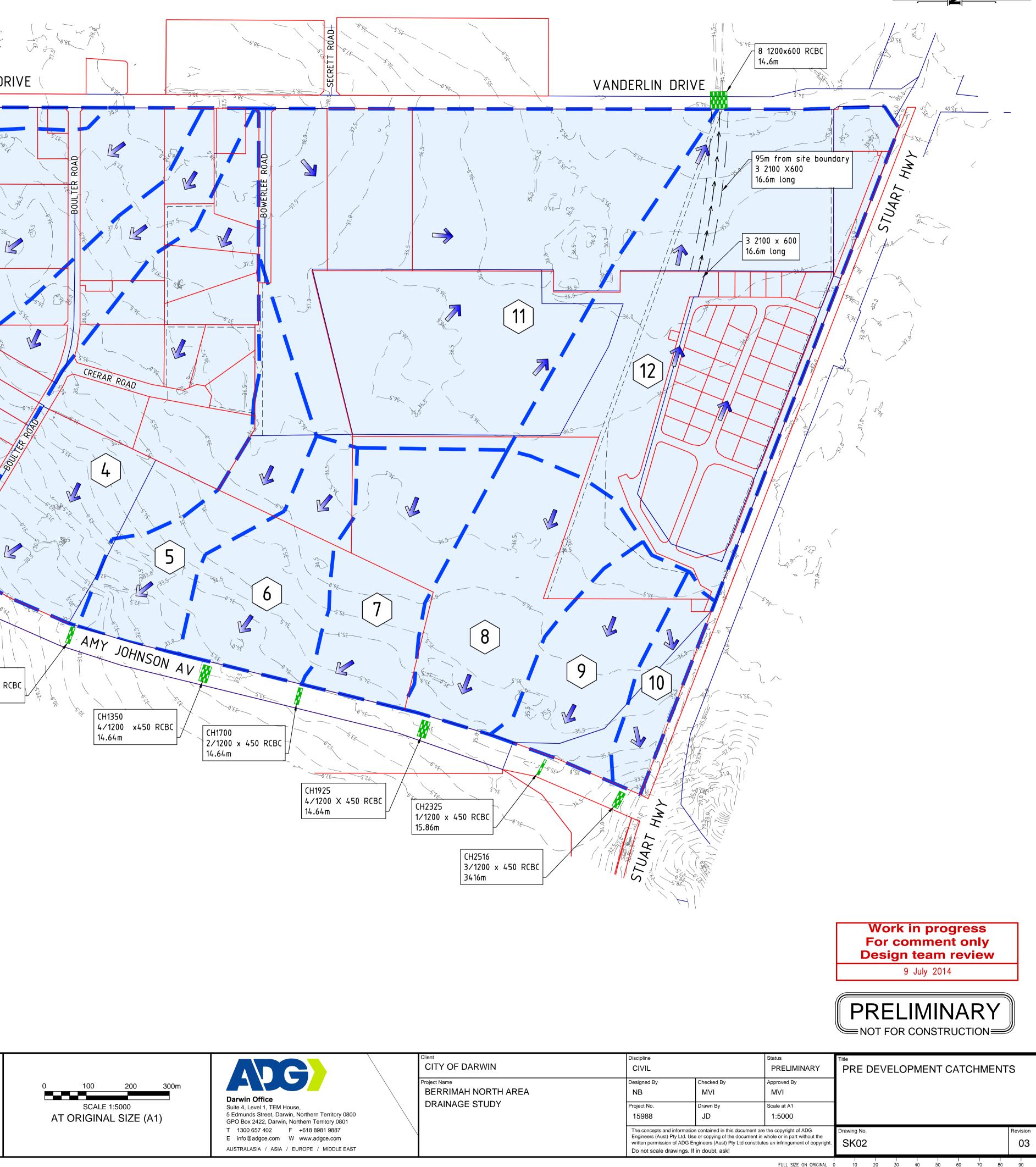
Appendix D Pre Development Catchment Delineation Plan

<u>LEGEND</u>

EXISTING SURFACE CONTOURS EXISTING LOT BOUNDARY EXISTING EASEMENT

CATCHMENT LABEL

CATCHMENT BOUNDARY FLOW PATH


EXISTING STORMWATER CULVERT

C	ATCHMEN	NT TABLE	
CATCHMENT	AREA (ha)	FRACTION IMPERVIOUS (Fi %)	FLOW Q100 (m3∕s)
1	9.657	20	3.095
2	46.124	20	15.114
3	24.204	25	6.600
4	39.732	20	10.900
5	14.111	0	5.100
6	13.864	0	5.678
7	16.393	0	6.270
8	20.266	0	8.198
9	12.296	0	5.316
10	5.259	0	2.299
11	65.290	15	28.359
12	55.750	10	19.528

03 21.05.14 Issued for Information 02 08.04.14 Issued for Information 01 11.03.14 Issued for Information Rev Date Description

PLOT DATE: 7/9/2014 10:08 AM FILENAME: J:\15000\15988 - BERRIMAH NORTH DRAINAGE STUDY\CIVIL\DWG\15988-SK02_PRE DEVELOPMENT CATCHMENTS.DWG

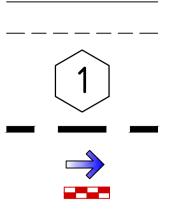
CITY OF DARWIN

CITY OF	
DARWIN	

JD MVI JD MVI

By Chk

02	21.05.14	Issued for Information
01	08.04.14	Issued for Information
Rev	Date	Description


PLOT DATE: 7/9/2014 10:09 AM FILENAME: J:\15000\15988 - BERRIMAH NORTH DRAINAGE STUDY\CIVIL\DWG\15988-SK03_PRE DEVELOPMENT CATCHMENT AERIAL PHOTO.DWG

SCALE 1:5000 AT ORIGINAL SIZE (A1) **Darwin Office** Suite 4, Level 1, TEM House, 5 Edmunds Street, Darwin, Northern Territory 0800 GPO Box 2422, Darwin, Northern Territory 0801 T 1300 657 402 F +618 8981 9887 E info@adgce.com W www.adgce.com AUSTRALASIA / ASIA / EUROPE / MIDDLE EAST

Project Name BERRIMAH NORTH AREA DRAINAGE STUDY

LEGEND

_____12.0_____

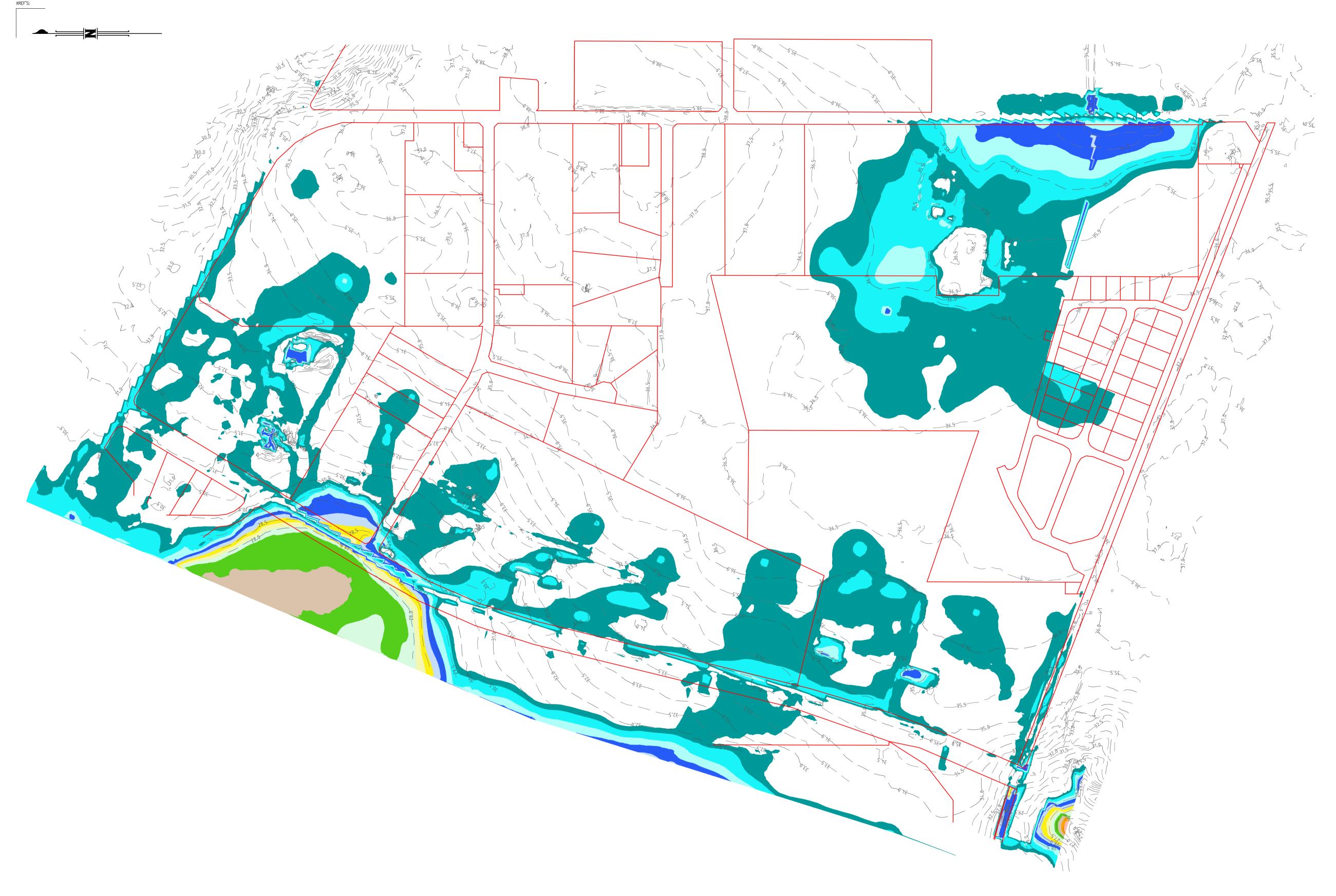
EXISTING SURFACE CONTOURS EXISTING LOT BOUNDARY EXISTING EASEMENT

CATCHMENT LABEL

CATCHMENT BOUNDARY

FLOW PATH EXISTING STORMWATER CULVERT

<u>NOTES:</u> REFER DRAWING SK02 FOR CATCHMENT TABLE



Discipline CIVIL		Status PRELIMINARY	^{⊤itle} PRE I	DEV	ELO	PME	NT					
Designed By NB	Checked By MVI	Approved By MVI	CATC	НМ	ENT	ON /	AERI	IAL F	PHOT	ГО		
Project No. 15988	Drawn By JD	Scale at A1 1:5000										
Engineers (Aust) Pty Ltd. Use	• • • •		Drawing No. SK03								Revision 02	
		I FULL SIZE ON ORIGINAL O) 10	1 20	1 30	 40	50	60	1 70	ا 80	90	1 100 mr

Appendix E Pre Development Catchment Flood Extents

03	21.05.14	Issued for Information	JD	MVI
02	08.04.14	Issued for Information	JD	MVI
01	11.03.14	Issued for Information	JD	MVI
Rev	Date	Description	Ву	Chk
PLOT DATE	: 7/9/2014 1	0:09 AM FILENAME: J:\15000\15988 - BERRIMAH NORTH DRAINAGE STUDY\CIVIL\DWG\15988-SK04_FLOOD EXTENTS (PRE).DWG		

0	100	200	300m						
SCALE 1:5000 AT ORIGINAL SIZE (A1)									
AI	URIGINA		\ 1)						

Darwin Office Suite 4, Level 1, TEM House, 5 Edmunds Street, Darwin, Northern Territory 0800 GPO Box 2422, Darwin, Northern Territory 0801 T 1300 657 402 F +618 8981 9887 E info@adgce.com W www.adgce.com AUSTRALASIA / ASIA / EUROPE / MIDDLE EAST

Client	
CITY OF DARWIN	

Project Name BERRIMAH NORTH AREA DRAINAGE STUDY

Designed
NB
Project N
1598
The con Enginee written p
Do not

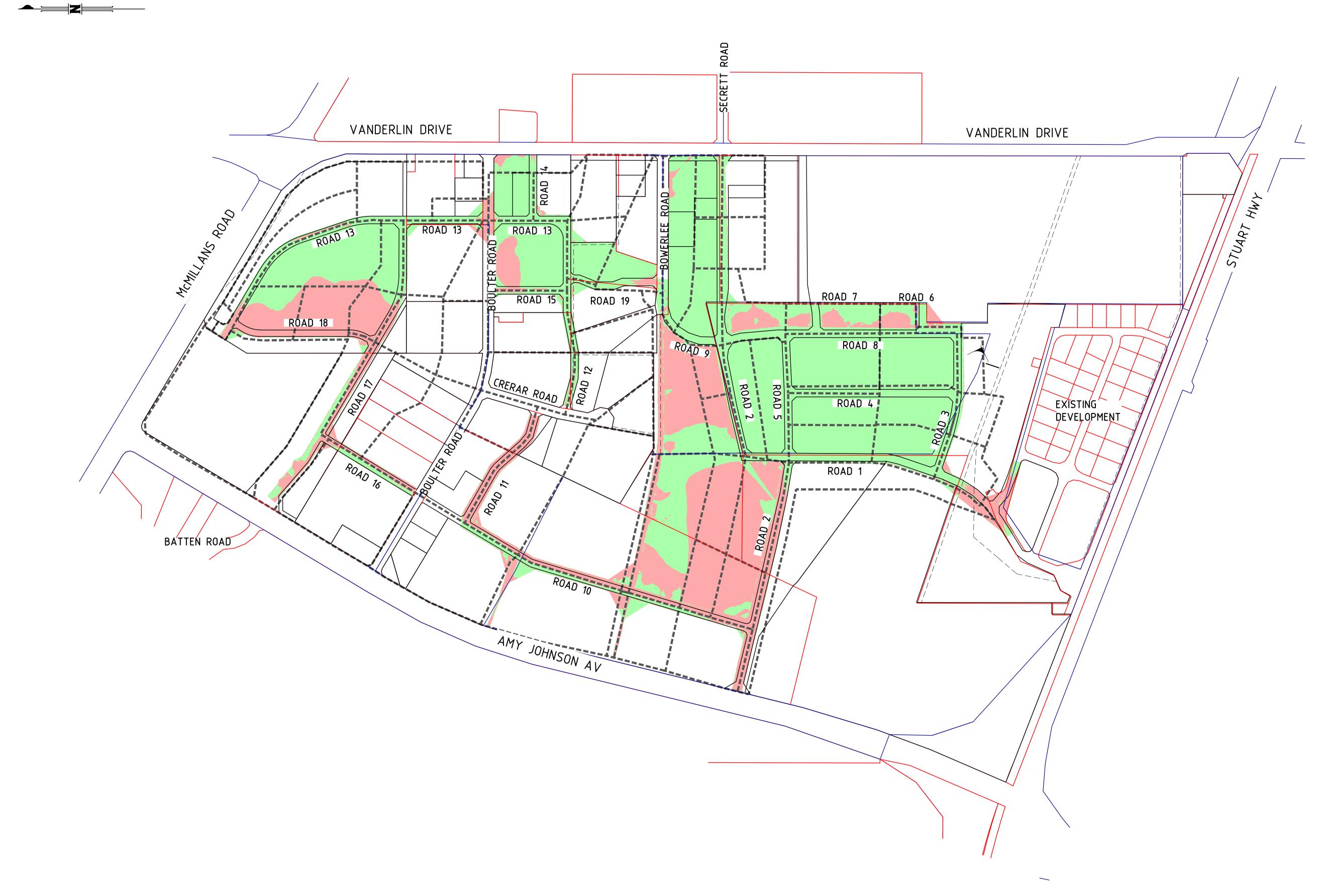
LEGEND

 	 -12.	0—	

EXISTING SURFACE CONTOURS EXISTING LOT BOUNDARY EXISTING EASEMENT

<u>NOTES:</u>

REFER DRAWING SK02 FOR CATCHMENT TABLE


FLOOD LEGEND

												_
bline		Status	Title									
VIL		PRELIMINARY	PRE I	DEV	ELO	PME	NT					
ned By	Checked By	Approved By	FLOC	D E	XTE	NTS						
5	MVI	MVI										
ct No.	Drawn By	Scale at A1										
988	JD	N.T.S.										
	n contained in this document are		Drawing No.								Revision	1
neers (Aust) Pty Ltd. Use or copying of the document in whole or in part without the en permission of ADG Engineers (Aust) Pty Ltd constitutes an infringement of copyright.			SK04								03	
not scale drawings. If	in doubt, ask!											
		FULL SIZE ON ORIGINAL	I I D 10	1 20	 30	 40	 50	60	 70	ا 80	90	1 100 mm

Appendix F Preliminary Bulk Earthworks

					CITY OF
02	21.05.14	Issued for Information	JD	MVI	CITTOF
01	08.04.14	Issued for Information	JD	KG	DARWI
Rev	Date	Description	Ву	Chk	DARWI
PLOT DAT	E: 7/9/2014 1	10:14 AM FILENAME: J:\15000\15988 - BERRIMAH NORTH DRAINAGE STUDY\CIVIL\DWG\15988-SK30_BULK EAR	RTHWORKS.DWG		

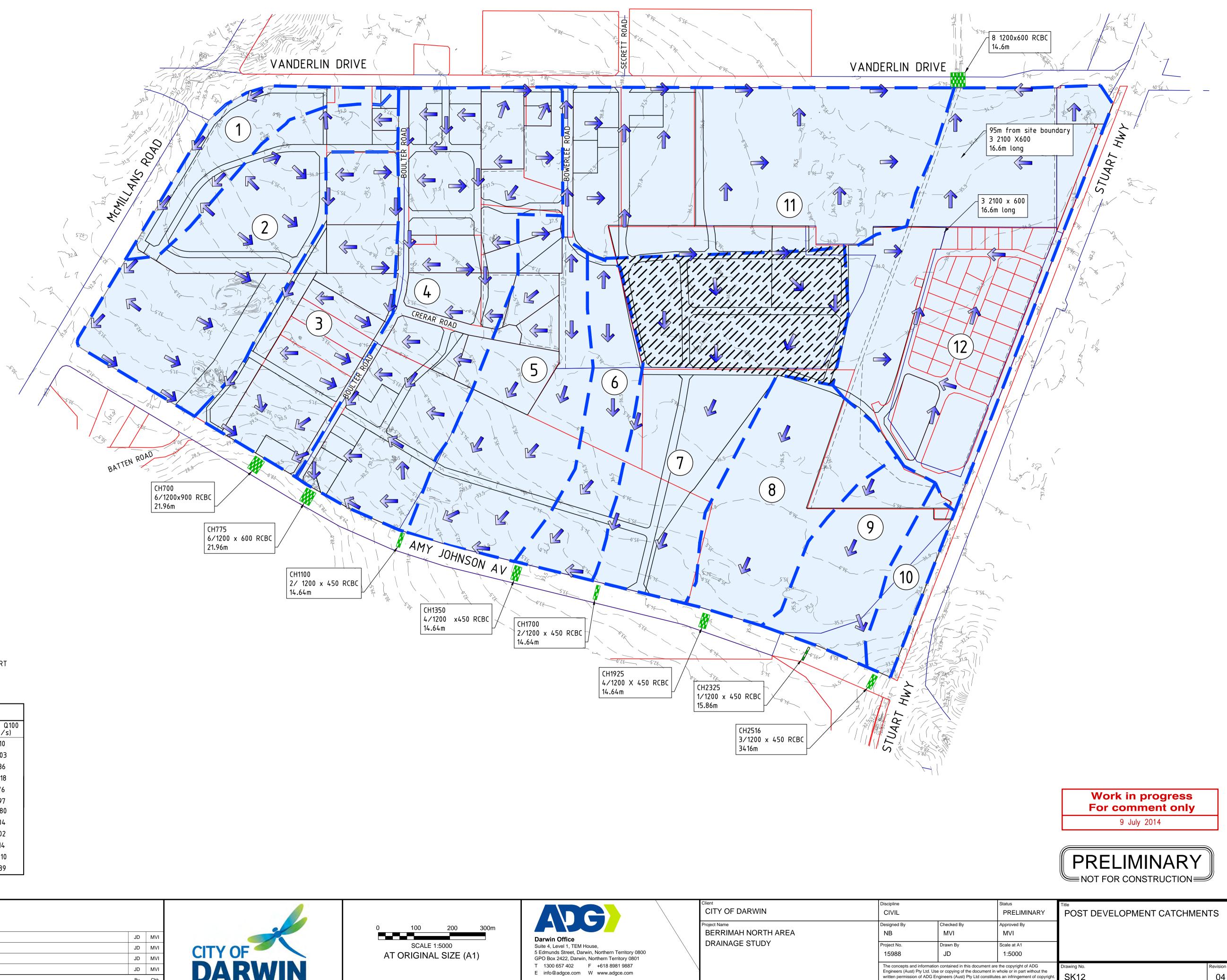
0	100	200	300m					
		200	300111					
SCALE 1:5000 AT ORIGINAL SIZE (A1)								
			\ ''					

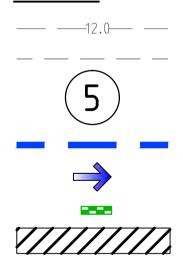
5 Edmunds Street, Darwin, Northern Territory 0800 GPO Box 2422, Darwin, Northern Territory 0801 E info@adgce.com W www.adgce.com AUSTRALASIA / ASIA / EUROPE / MIDDLE EAST

Project Name BERRIMAH NORTH AREA DRAINAGE STUDY

<u>LEGEND</u>

PROPOSED CUT


PROPOSED FILL


	Discipline		Status	Title									
	CIVIL		PRELIMINARY	BULI	K EA	RTH	WOF	RKS					
	Designed By	Checked By	Approved By	LAY	JUT	PLA	N						
	NB	MVI	MVI										
	Project No.	Drawn By	Scale at A1										
	15988	JD	1:5000										
The concepts and information contained in this document are the copyright of ADG Engineers (Aust) Pty Ltd. Use or copying of the document in whole or in part without the written permission of ADG Engineers (Aust) Pty Ltd constitutes an infringement of copyright.				Drawing No								Revision	
				SK30						02			
	Do not scale drawings. If	'in doubt, ask!											
			FULL SIZE ON ORIGINAL) 10	20	30	40	50	60	70	80	90	100 mm

Appendix G Post Development Catchment Plans

<u>LEGEND</u>

EXISTING SURFACE CONTOURS EXISTING LOT BOUNDARY

CATCHMENT LABEL

CATCHMENT BOUNDARY

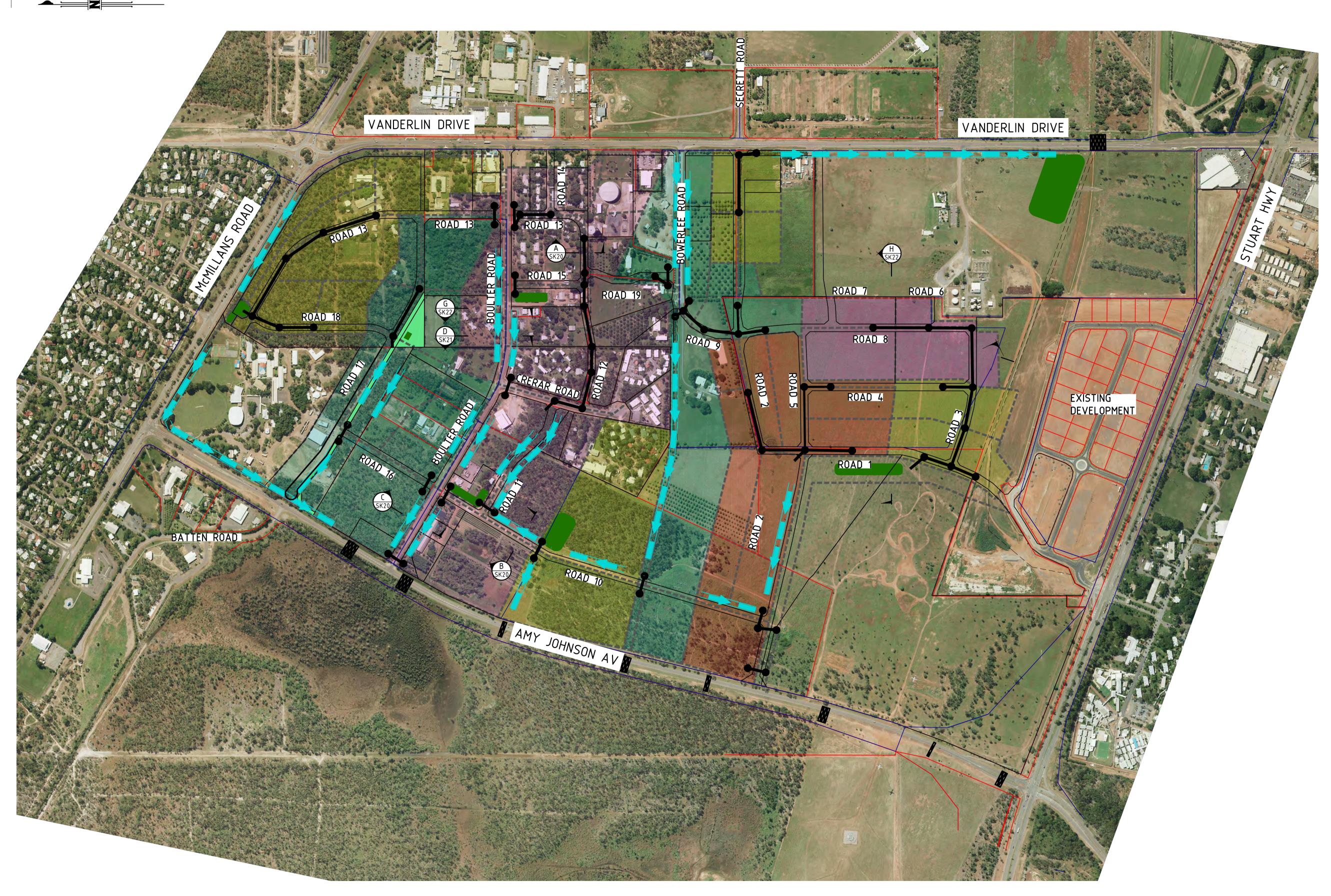
FLOW PATH

EXISTING STORM WATER CULVERT

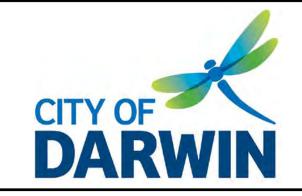
CHANGE IN DISCHARGE POINT

CATCHMENT TABLE									
CATCHMENT	AREA (ha)	FRACTION IMPERVIOUS (Fi %)	FLOW Q100 (m3∕s)						
1	9.072	80	4.010						
2	31.008	80	10.603						
3	24.382	80	9.286						
4	44.419	80	16.918						
5	27.584	80	7.176						
6	12.783	80	7.797						
7	39.210	60	21.880						
8	21.043	0	9.004						
9	12.576	0	6.402						
10	5.205	0	2.814						
11	53.146	80	26.310						
12	42.350	80	17.189						

04	03.07.14	Issued for Information	JD	MVI
03	21.05.14	Issued for Information	JD	MVI
02	08.04.14	Issued for Information	JD	MVI
01	11.03.14	Issued for Information	JD	MVI
Rev	Date	Description	By	Chk


I			Client CITY OF DARWIN	Discipline CIVIL				
	0 100 200 300m SCALE 1:5000 AT ORIGINAL SIZE (A1)	Darwin Office Suite 4, Level 1, TEM House, 5 Edmunds Street, Darwin, Northern Territory 0800 GPO Box 2422, Darwin, Northern Territory 0801 T 1300 657 402 F +618 8981 9887 E info@adgce.com W www.adgce.com AUSTRALASIA / ASIA / EUROPE / MIDDLE EAST	Project Name BERRIMAH NORTH AREA DRAINAGE STUDY	Designed By NB Project No. 15988	Checked By MVI Drawn By JD			
				Engineers (Aust) Pty L written permission of A	ormation contained in this Ltd. Use or copying of th ADG Engineers (Aust) P ngs. If in doubt, ask!			

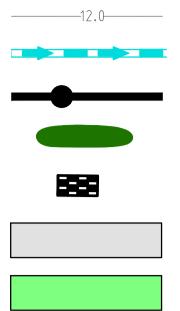
wing No. SK12


04

Appendix H Post Development Schematic Stormwater Network

04	09.07.14	Issued for Information	JD	MVI			
04	09.07.14		30				
03	30.05.14	Issued for Information	JD	MVI			
02	21.05.14	Issued for Information	JD	MVI			
01	08.04.14	Issued for Information	JD	MVI			
Rev	Date	Description	Ву	Chk			
LOT DATE: 7/9/2014 10:11 AM FILENAME: J:\15000\15988 - BERRIMAH NORTH DRAINAGE STUDY\CIVIL\DWG\15988-SK13_POST DEVELOPMENT DRAINAGE NETWORK.DWG							

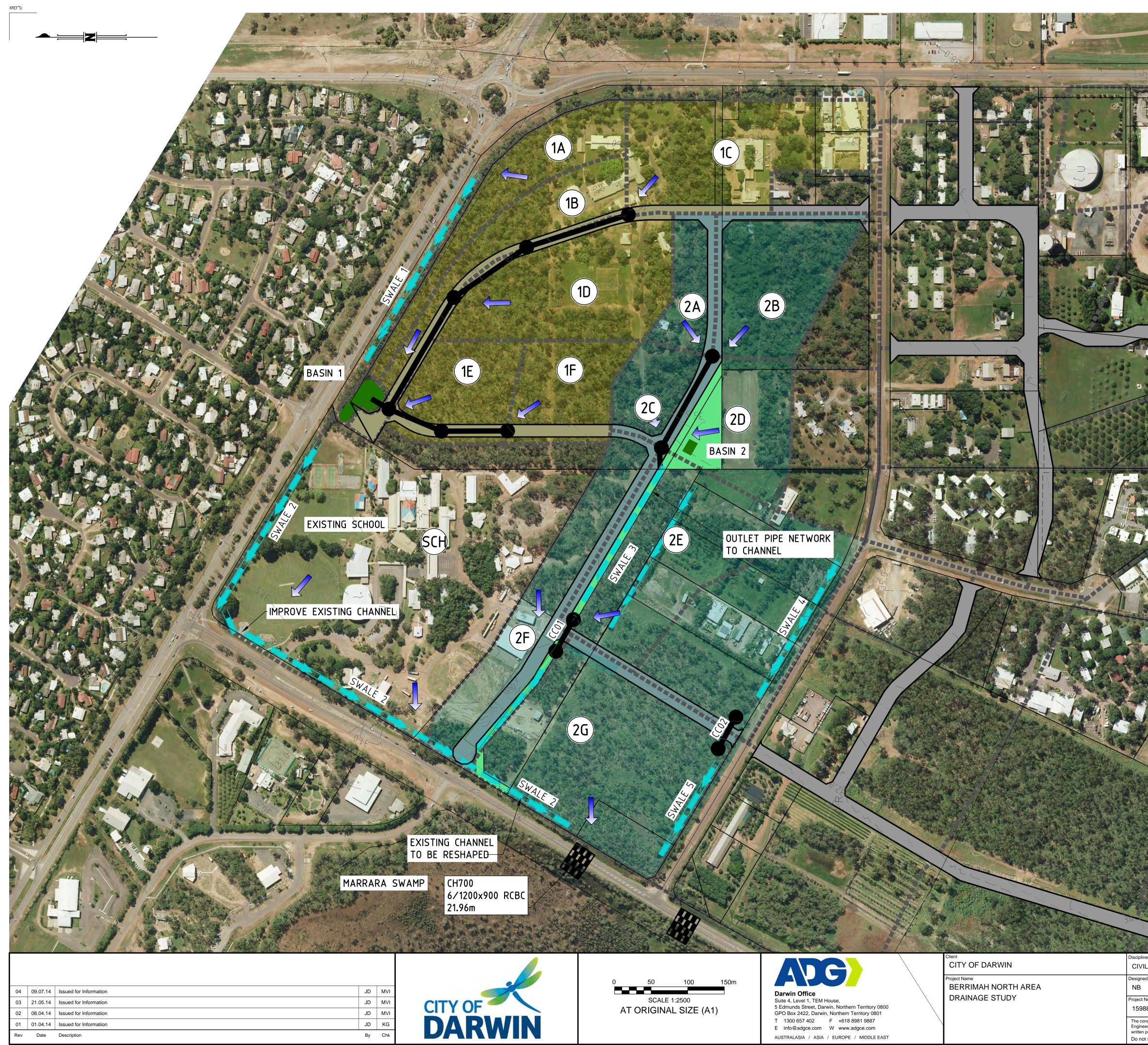
0	100	200	300m					
	SCALE ²	1:5000						
AT ORIGINAL SIZE (A1)								



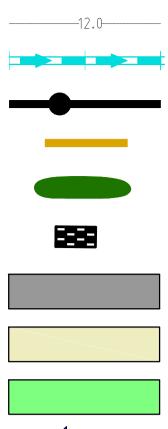
E info@adgce.com W www.adgce.com AUSTRALASIA / ASIA / EUROPE / MIDDLE EAST

CITY OF DARWIN	

oject Name BERRIMAH NORTH AREA DRAINAGE STUDY


<u>LEGEND</u>

EXISTING SURFACE CONTOURS PROPOSED DRAINAGE CHANNEL PROPOSED DRAINAGE NETWORK PROPOSED DETENTION BASIN EXISTING CULVERTS PROPOSED ROAD NETWORK LINEAR PARK/DETENTION AREA


Discipline		Status	Title										
CIVIL		PRELIMINARY	POST	DE	VEL	OPM	IENT	•					
Designed By NB	Checked By MVI	Approved By MVI	SCHEMATIC UNDER GROUND						SCHEMATIC UNDER GROUND STORMWATER NETWORK				
Project No. 15988	Drawn By JD	Scale at A1 1:5000			,,,,,	.1 \ 1 \	_ 1 0 0						
The concepts and information contained in this document are the copyright of ADG Engineers (Aust) Pty Ltd. Use or copying of the document in whole or in part without the written permission of ADG Engineers (Aust) Pty Ltd constitutes an infringement of copyright. Do not scale drawings. If in doubt, ask!			Drawing No. SK13								Revision 04		
		I FULL SIZE ON ORIGINAL	I I 0 10	20	1 30	1 40	50	60	1 70	ا 80	90	1 100mm	

PLOT DATE: 7/9/2014 10:11 AM FILENAME: J:\15000\15988 - BERRIMAH NORTH DRAINAGE STUDY\CIVIL\DWG\15988-SK14_POST DEVELOPMENT CATCHMENT1 PLAN.DWG

AUSTRALASIA / ASIA / EUROPE / MIDDLE EAST

LEGEND

CC02

EXISTING SURFACE CONTOURS PROPOSED DRAINAGE CHANNEL PROPOSED DRAINAGE NETWORK CREST OF ROAD - (TOP OF CATCHMENT) PROPOSED DETENTION BASIN EXISTING CULVERTS

PROPOSED ROAD NETWORK

PROPOSED CATCHMENTS

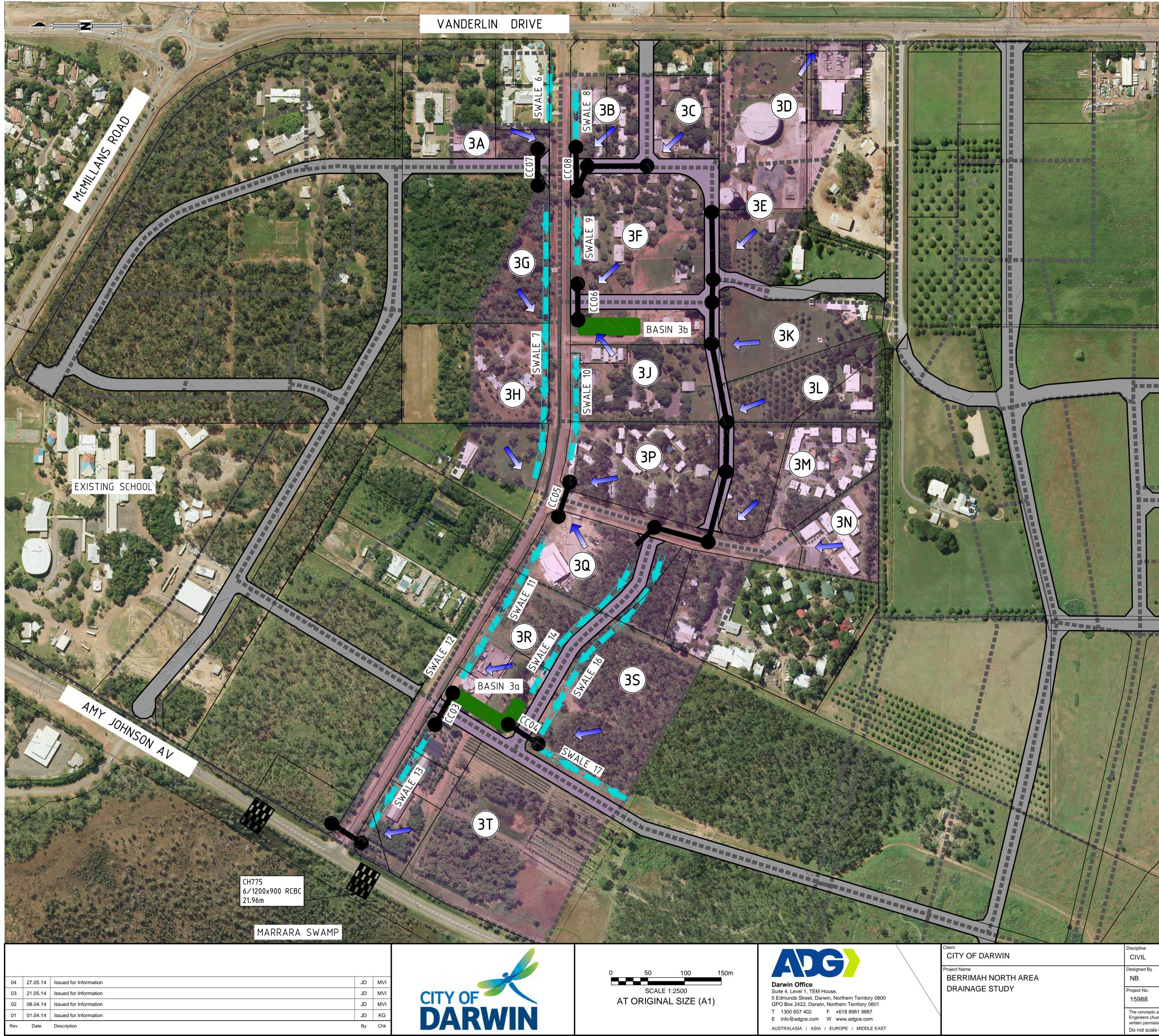
LINEAR PARK/DETENTION AREA

PROPOSED DISCHARGE POINT CULVERT CROSSING NUMBER

CATCHMENT No.	AREA (Ha)
1A	2.16
1B	2.26
1C	4.36
1D	4.13
1E	2.19
1F	1.98
2A	1.24
2B	3.15
2C	1.27
2D	2.56
2E	4.82
2F	3.34
2G	6.71
SCH	13.44

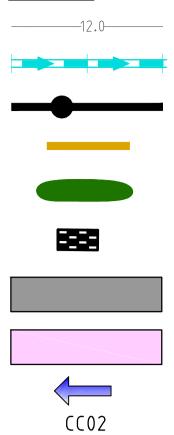
CATCHMENT TABLE

	SWALE	TABLE	
SWALE NO.	LENGTH (m)	DEPTH (m)	BASE WIDTH (m)
1	326	0.4	1.5
2	900	0.4	1.5
3	200	0.4	1.5
4	95	0.4	1.5
5	275	0.4	1.5


BASIN TABLE							
BASIN NO.	AREA (m²)	DEPTH (m)					
1	1554	0.8					
2	205	0.9					

NOTE:

REFER BERRIMAH NORTH DRAINAGE STUDY 15988 C R001 FOR FURTHER DETAILS AND CALCULATIONS



line Status /IL PREI		Status PRELIMINARY										1						
ned By	Checked By MVI	Approved By MVI	CATCHMENT AREA 1 & 2 SHEET 1 OF 4											CATCHMENT AREA 1 & 2 SHEET 1 OF 4				
t No. 988	Drawn By JD	Scale at A1 1:2500	OTIE		01	•												
concepts and information contained in this document are the copyright of ADG neers (Aust) Pty Ltd. Use or copying of the document in whole or in part without the on permission of ADG Engineers (Aust) Pty Ltd constitutes an infringement of copyright. Not scale drawings. If in doubt, ask!			Drawing No								Revision 04							
		FULL SIZE ON ORIGINAL () 10	1 20	 30	l 40	ا 50	60	 70	ا 80	90	l 100mm						

PLOT DATE: 7/9/2014 10:12 AM FILENAME: J:\15000\15988 - BERRIMAH NORTH DRAINAGE STUDY\CIVIL\DWG\15988-SK15_POST DEVELOPMENT CATCHMENT2 PLAN.DWG

LEGEND

EXISTING SURFACE CONTOURS PROPOSED DRAINAGE CHANNEL PROPOSED DRAINAGE NETWORK

CREST OF ROAD - (TOP OF CATCHMENT)

PROPOSED DETENTION BASIN

EXISTING CULVERTS

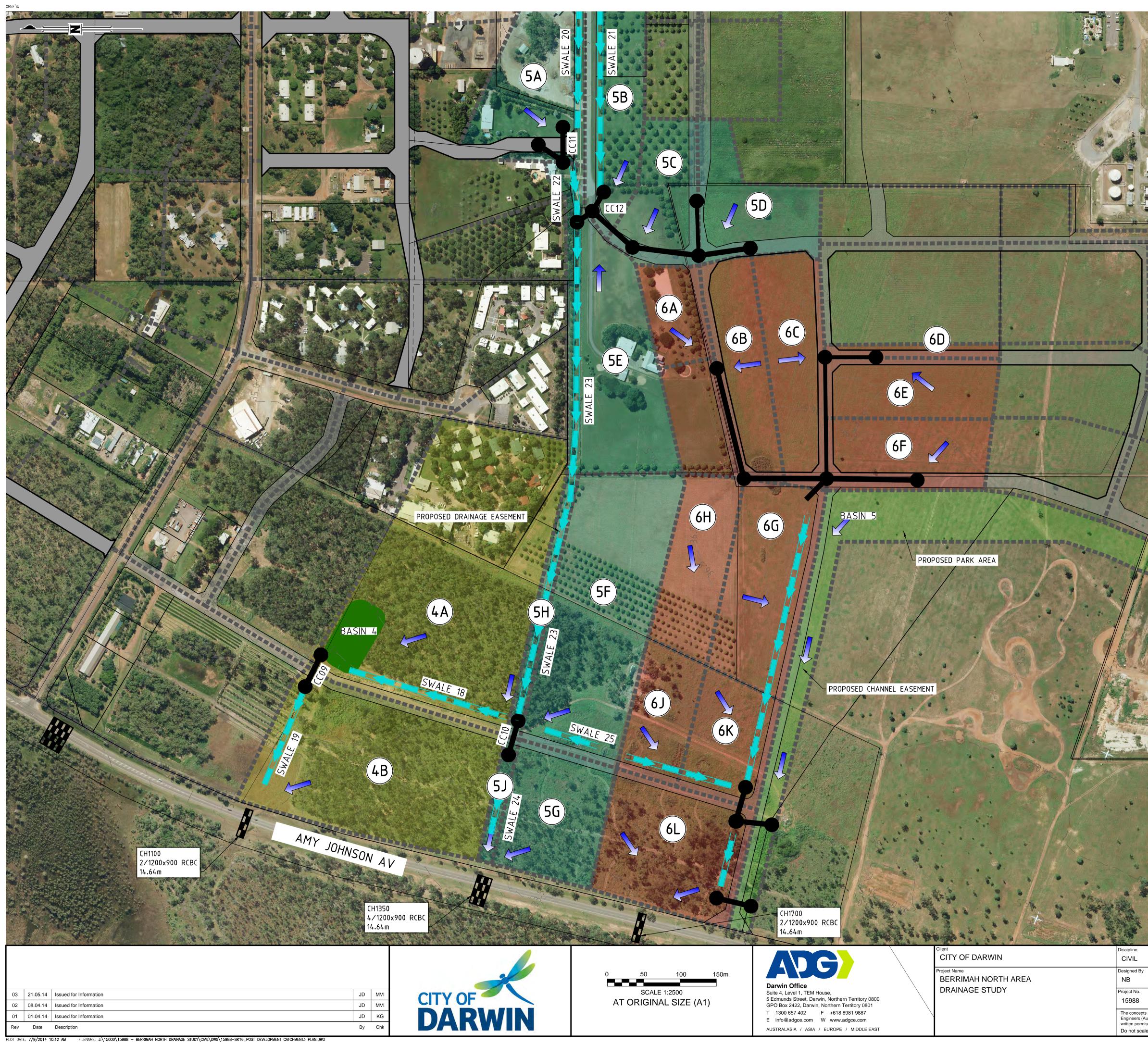
PROPOSED ROAD NETWORK

PROPOSED CATCHMENTS

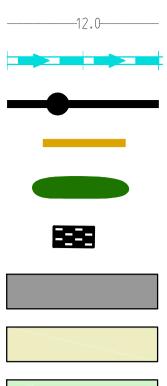
PROPOSED DISCHARGE POINT CULVERT CROSSING NUMBER

NOTE:

REFER BERRIMAH NORTH DRAINAGE STUDY 15988 C R001 FOR FURTHER DETAILS AND CALCULATIONS


CATCHME	ENT TABLE
CATCHMENT No.	AREA (Ha)
ЗA	1.15
ЗB	1.48
3C	1.45
3D	2.49
ЗE	1.89
ЗF	3.86
3G	1.39
ЗН	2.61
31	3.49
ЗК	1.83
3L	1.82
ЗМ	2.92
ЗN	1.33
ЗP	3.12
ЗQ	2.00
ЗR	2.97
35	5.67
ЗТ	6.61

	SWALE	TABLE	
SWALE NO.	LENGTH (m)	DEPTH (m)	BASE WIDTH (m)
6	140	0.4	1.5
7	400	0.4	1.5
8	140	0.4	1.5
9	130	0.4	1.5
10	200	0.4	1.5
11	290	0.4	1.5
13	200	0.4	1.5
14	300	0.4	1.5
16	320	0.4	1.5
17	170	0.4	1.5


BASIN TABLE								
BASIN NO.	AREA (m²)	DEPTH (m)						
За	2500	0.5						
ЗЬ	2000	0.5						

line Status /IL PRELIMINAR		Status PRELIMINARY	Title POS	T DE	VEL	OPM	IENT								
ned By	Checked By MVI	Approved By MVI	CATCHMENT AREA 3 SHEET 2 OF 4							CATCHMENT AREA 3 SHEET 2 OF 4					
et No. 988	Drawn By JD	Scale at A1	••••		•	-									
concepts and information contained in this document are the copyright of ADG neers (Aust) Pty Ltd. Use or copying of the document in whole or in part without the en permission of ADG Engineers (Aust) Pty Ltd constitutes an infringement of copyright. not scale drawings. If in doubt, ask!			Drawing No								Revision 04				
		I FULL SIZE ON ORIGINAL C	10	20	1 30	1 40	50	60	70	ا 80	90	1 100 mm			

LEGEND

EXISTING SURFACE CONTOURS

PROPOSED DRAINAGE CHANNEL

PROPOSED DRAINAGE NETWORK

CREST OF ROAD - (TOP OF CATCHMENT)

PROPOSED DETENTION BASIN

EXISTING CULVERTS

PROPOSED ROAD NETWORK

PROPOSED CATCHMENTS

PROPOSED PARK AREA

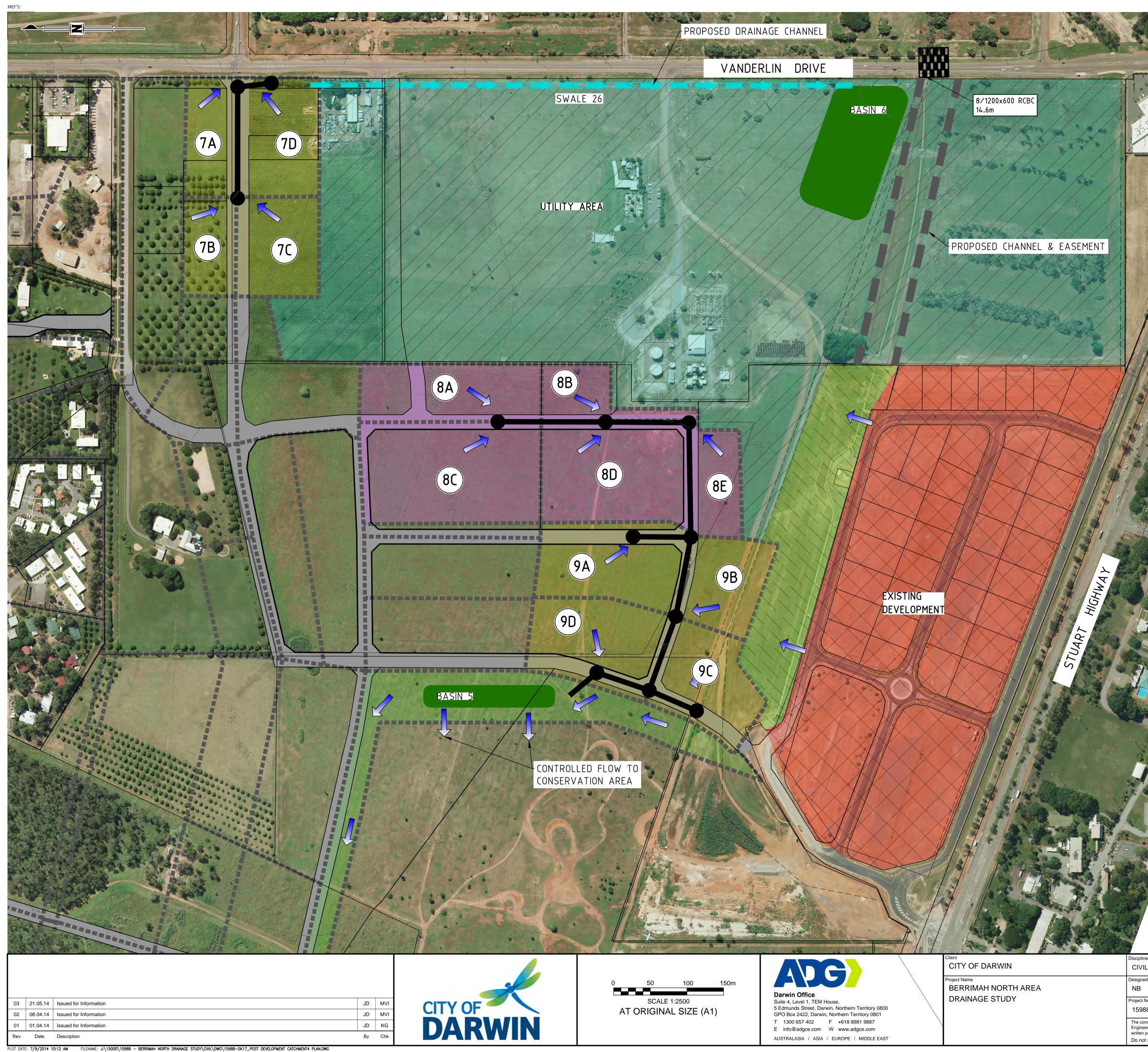
PROPOSED DISCHARGE POINT CULVERT CROSSING NUMBER

CC02 NOTE:

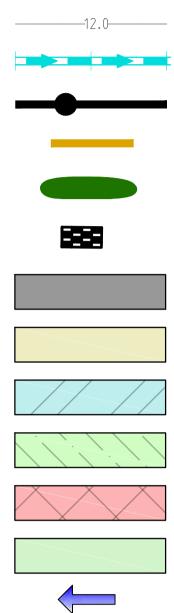
REFER BERRIMAH NORTH DRAINAGE STUDY 15988 C R001 FOR FURTHER DETAILS AND CALCULATIONS

CATCHIL	
CATCHMENT No.	AREA (Ha)
4 A	9.34
4B	6.01
5A	3.77
5B	3.59
5C	1.87
5E	4.33
5F	5.59
5G	2.39
5H	0.68
5J	0.35
6A	2.37
6B	2.17
6C	2.55
6D	0.45
6E	1.96
6F	2.18
6G	2.32
6H	2.32
6J	1.57
6K	1.33
6L	1.38

	SWALE	TABLE	
SWALE NO.	LENGTH (m)	DEPTH (m)	BASE WIDTH (m)
18	260	0.4	1.5
19	160	0.3	1.5
20	300	0.3	1.5
21	390	0.3	1.5
22	65	0.4	1.5
23	680	0.4	1.5
24	140	0.4	1.5
25	130	0.4	1.5


BASIN TABLE						
BASIN NO.	AREA (m²) DEPTH (m)					
4	5106	1.0				

Work in progress For comment only 9 July 2014



bline		Status	Title									
VIL		PRELIMINARY	POST	DE	VELC	DPM	ENT					
ned By	Checked By MVI	Approved By MVI	CATCHMENT AREA 4, 5 & 6 SHEET 3 OF 4									
ct No.	Drawn By	Scale at A1	<u> </u>		••••							
988	JD	1:2500										
	n contained in this document are or copying of the document in		Drawing No.								Revision	
		es an infringement of copyright.	SK16								03	
not scale drawings. If	in doubt, ask!											
		FULL SIZE ON ORIGINAL	I I D 10	1 20	1 30	1 40	1 50	60	1 70	1 80	90	100mm

CATCHMENT TABLE

<u>LEGEND</u>

CC02

EXISTING SURFACE CONTOURS
 PROPOSED DRAINAGE CHANNEL
 PROPOSED DRAINAGE NETWORK
 CREST OF ROAD - (TOP OF CATCHMENT)
 PROPOSED DETENTION BASIN
 EXISTING CULVERTS
 PROPOSED ROAD NETWORK
 PROPOSED CATCHMENTS
 PROPOSED UTILITY AREA

EXISTING DRAINAGE STORAGE AREA

EXISTING DEVELOPMENT

PROPOSED PARK AREA

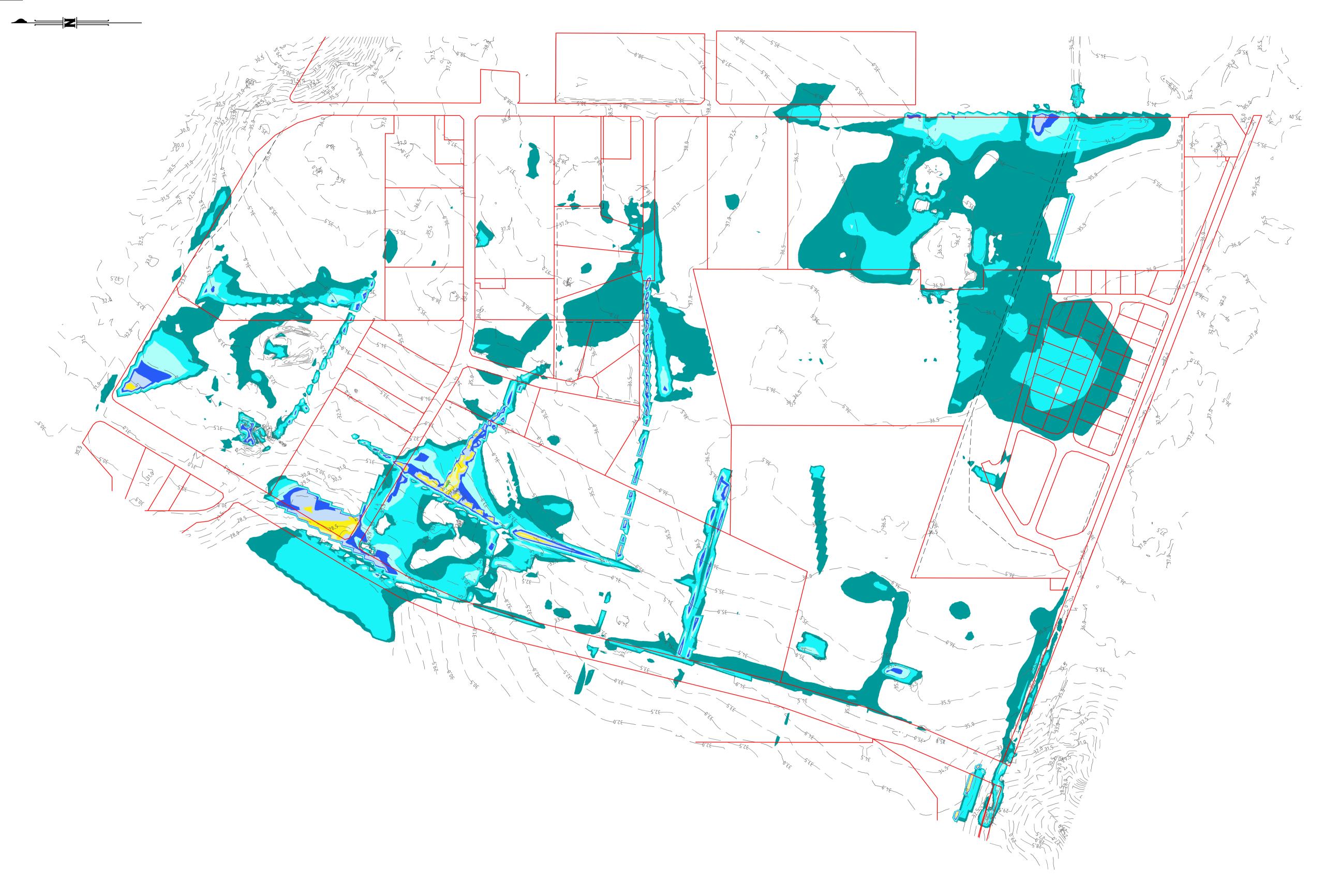
PROPOSED DISCHARGE POINT CULVERT CROSSING NUMBER

NOTE:

REFER BERRIMAH NORTH DRAINAGE STUDY 15988 C R001 FOR FURTHER DETAILS AND CALCULATIONS

CATCHMENT TABLE

CATCHMENT	No.	AREA (Ha)
7A		1.15
7B		0.97
7C		1.54
7D		1.82
8A		1.95
8B		0.91
8C		3.39
8D		2.85
8E		1.03
9A		2.20
9B		1.36
9C		1.76
9D		2.14


	SWALE	TABLE	
SWALE NO.	LENGTH (m)	DEPTH (m)	BASE WIDTH (m)
26	260	0.4	1.5

BASIN TABLE				
BASIN NO.	AREA (m ²) DEPTH (m)			
5	5290	0.4		
6	17750	0.7		

			progress ment only	PRELIMINARY				
		9 Jul	y 2014					
line			Status	Title				
/IL			PRELIMINARY	POST DEVELOPMENT CATCHMENT AREA - 7, 8 & 9				
ned By	,	Checked By	Approved By					
		MVI	MVI	SHEET 4 OF 4				
t No.		Drawn By	Scale at A1					
988		JD	1:2500					
			cument are the copyright of ADG	Drawing No. Revision				
			cument in whole or in part without the d constitutes an infringement of copyright.	SK17 03				
not sca	ale drawings. If	in doubt, ask!						
			FULL SIZE ON ORIGINAL	0 10 20 30 40 50 60 70 80 90 100m				

Appendix I Post Development Flood Extents

XREF'S:

00.07.14	logued for Information		MVI
09.07.14		JD	
21.05.14	Issued for Information	JD	MVI
08.04.14	Issued for Information	JD	MVI
Date	Description	Ву	Chk
7/0/2014 1	0:13 AM FILENAME: J:\15000\15988 - BERRIMAH NORTH DRAINAGE STUDY\CIVIL\DWG\15988-SK18_FLOOD EXTENTS (POST).DWG		
	08.04.14 Date	21.05.14 Issued for Information 08.04.14 Issued for Information Date Description	21.05.14 Issued for Information JD 08.04.14 Issued for Information JD Date Description By

100	000	000
100	200	300m
SCALE ²	1:5000	
ORIGINA	L SIZE (A	\1)
		100 200 SCALE 1:5000 ORIGINAL SIZE (A

Darwin Office Suite 4, Level 1, TEM House, 5 Edmunds Street, Darwin, Northern Territory 0800 GPO Box 2422, Darwin, Northern Territory 0801 T 1300 657 402 F +618 8981 9887 E info@adgce.com W www.adgce.com AUSTRALASIA / ASIA / EUROPE / MIDDLE EAST

Ollerit	
CITY OF DARWIN	

Project Name BERRIMAH NORTH AREA DRAINAGE STUDY

Disciplir CIVI Designed NB Project N 15988 The con Enginee written p Do not <u>LEGEND</u>

— — — — — — EXISTING EASEMENT

— — 12.0 — EXISTING SURFACE CONTOURS EXISTING LOT BOUNDARY

FLOOD LEGEND

Work in progress For comment only
9 July 2014

pline		Status	Title										
VIL		PRELIMINARY	PC)ST	DE	VEL	OPM	IENT					
gned By 3	Checked By MVI	Approved By	FL	00	DE	XTE	NTS						
ct No. 988	Drawn By JD	Scale at A1 N.T.S.											
ineers (Aust) Pty Ltd. Us	• • • •		Drawin SK	ig No. (18								Revision 03	
		FULL SIZE ON ORIGINAL	0 1	l 0	1 20	1 30	 40	ا 50	60	1 70	ا 80	90	 100 m

Appendix J Inflow Locations form XP-STORM

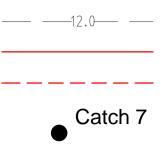
JD MVI By Chk

PLOT DATE: 7/9/2014 10:09 AM FILENAME: J:\15000\15988 - BERRIMAH NORTH DRAINAGE STUDY\CIVIL\DWG\15988-SK05_PRE DEV INFLOW.DWG

0	100	200	300m	
AT	SCALE ORIGINA		41)	Darwin Office Suite 4, Level 1, TEM House, 5 Edmunds Street, Darwin, Northern Territory 0800 GPO Box 2422, Darwin, Northern Territory 0801 T 1300 657 402 F +618 8981 9887 E info@adgce.com W www.adgce.com

C

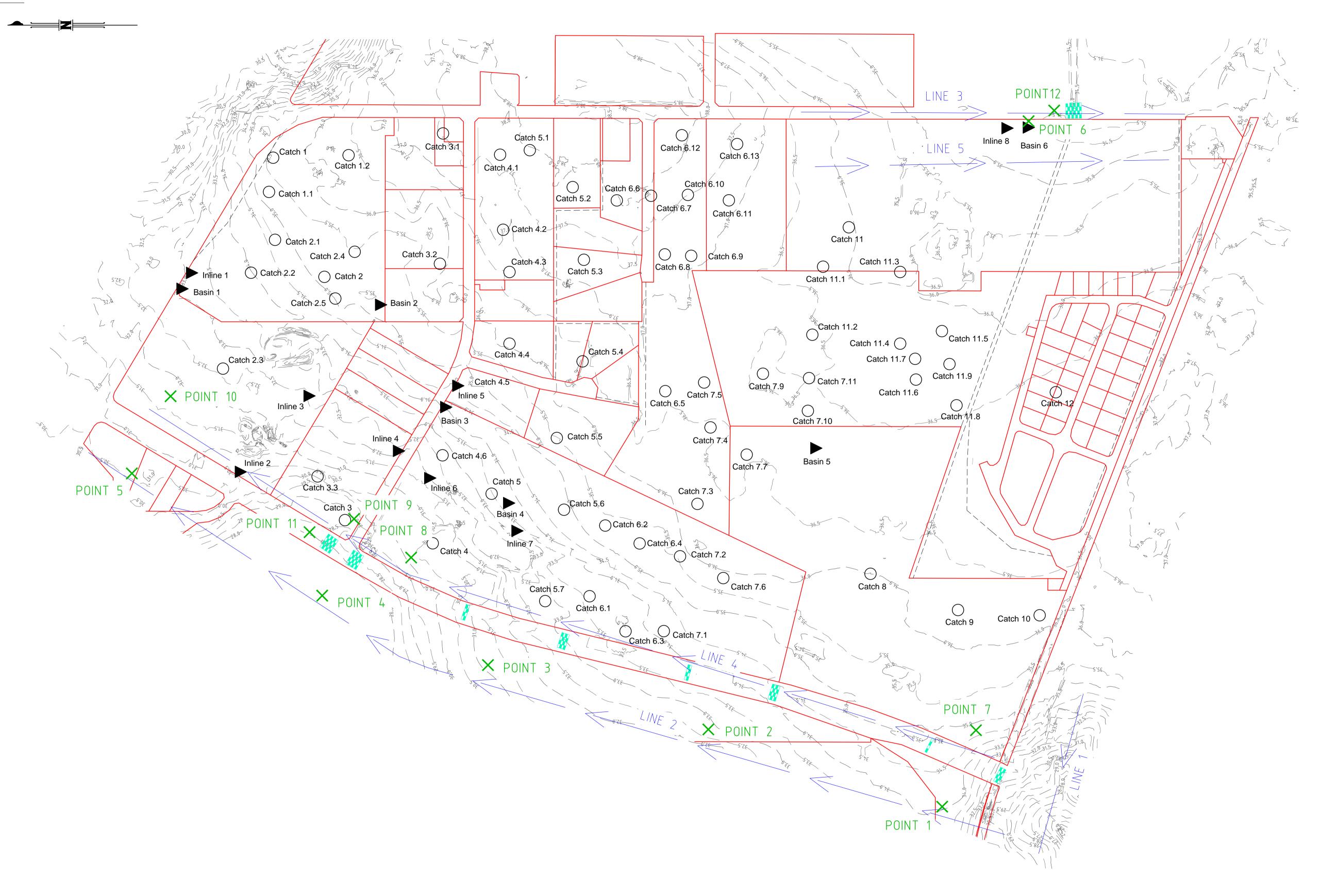
AUSTRALASIA / ASIA / EUROPE / MIDDLE EAST


Ollerit	
CITY OF DARWIN	

Project Name BERRIMAH NORTH AREA DRAINAGE STUDY

Discipli CIV
Design NB
Project 159
The co Engine writter Do no

<u>LEGEND</u>


EXISTING LOT BOUNDARY EXISTING EASEMENT

CATCHMENT INFLOW LOCATION

NOTES:

REFER DRAWING SK02 FOR CATCHMENT TABLE

cipline		Status	Title									
IVIL		PRELIMINARY	PRE	E DE	VELO	PME	NT					
igned By	Checked By	Approved By		LOW	LOC	ΑΤΙΟ	NS					
В	MVI	MVI										
ect No.	Drawn By	Scale at A1										
5988	JD	1:5000										
	n contained in this document are		Drawing	No.							Revision	
	• • • •	whole or in part without the es an infringement of copyright.	SKO)5							01	
		FULL SIZE ON ORIGINAL	1 I D 10	 20	 30	 40	ا 50	60	ا 70	 80	90	1 100 mm

02	09.07.14	Issued for Information	JD	MVI	CITY O
01	21.05.14	Issued for Information	JD	MVI	
Rev	Date	Description	Ву	Chk	DAL
PLOT DAT	F: 7/9/2014 1	0:09 AM FUENAME: J:\15000\15988 - BERRINAH NORTH DRAINAGE STUDY\CIVII\DWG\15988-SK09 POST DEV INFLOW DWG			

		Client CITY OF DARWIN	Discipline CIVIL
0 100 200 300m SCALE 1:5000	Darwin Office Suite 4, Level 1, TEM House, 5 Edmunds Street, Darwin, Northern Territory 0800	Project Name BERRIMAH NORTH AREA DRAINAGE STUDY	Designed By NB Project No. 15988
AT ORIGINAL SIZE (A1)	GPO Box 2422, Darwin, Northern Territory 0801 T 1300 657 402 F +618 8981 9887 E info@adgce.com W www.adgce.com AUSTRALASIA / ASIA / EUROPE / MIDDLE EAST		The concepts Engineers (Au written permis Do not scale

LEGEND 12.0 Catch 7 Inline 8 V Basin 6 V

EXISTING SURFACE CONTOURS EXISTING LOT BOUNDARY EXISTING EASEMENT

CATCHMENT INFLOW LOCATION

BASIN/INLINE LOCATION

EXISTING FLOW LINE EXISTING POINT OF INTREST

NOTES: REFER DRAWING SK02 FOR CATCHMENT TABLE

line		Status	Title
/IL		PRELIMINARY	POST DEVELOPMENT
ned By	Checked By MVI	Approved By	INFLOW LOCATIONS
ot No. 988	Drawn By JD	Scale at A1 1:5000	
neers (Aust) Pty Lto en permission of AD	I. Use or copying of the docu	ment are the copyright of ADG ument in whole or in part without the constitutes an infringement of copyright.	Drawing No. Revision 02
		FULL SIZE ON ORIGINAL	0 10 20 30 40 50 60 70 80 90 100m

Appendix K Proposed Road Network and Typical Sections

04	09.07.14	Issued for Information	JD	MVI
03	21.05.14	Issued for Information	JD	MVI
02	06.05.14	Issued for Information	JD	MVI
01	08.04.14	Issued for Information	JD	MVI
Rev	Date	Description	Ву	Chk
DT DATE	E: 7/9/2014 1	0:10 AM FILENAME: J:\15000\15988 - BERRIMAH NORTH DRAINAGE STUDY\CIVIL\DWG\15988-SK11_POST DEVELOPMENT ROAD NETWORK ON AERIAL.DWG		

0	100	200	300m
	SCALE	1:5000	
AT C	RIGINA	L SIZE (A	\1)

E info@adgce.com W www.adgce.com AUSTRALASIA / ASIA / EUROPE / MIDDLE EAST

CITY OF DARWIN
Project Name
BERRIMAH NORTH AREA

DRAINAGE STUDY

Designo NB Project N 1598 The cor Enginee written Do not

<u>LEGEND</u>

EXISTING SURFACE CONTOURS PROPOSED ROAD NETWORK ROADS CHANGED FROM BERRIMAH NORTH DRAFT AREA PLAN

ROAD RESERVE	ROAD WIDTH	DRAINAGE CHANNEL	KERB	DRAINAGE	ROAD LENGTH
22m	11.0m	NA	YES	PIPE NETWORK	717
22m	11.0m	ch0 - ch.500	500 - END	PIPE TO CHANNEL	800
20m	11.0m	NA	YES	PIPE NETWORK	380
20m	11.0m	NA	YES	PIPE NETWORK	446
20m	11.0m	NA	YES	PIPE NETWORK	960
20m	8.0m	NA	YES	N/A	80
20m	8.0m	NA	YES	N/A	80
20m	11.0m	NA	YES	PIPE NETWORK	625
20m	11.0m	NA	YES	PIPE NETWORK	210
20m	11.0m	RHS.	LHS.	CULVERT / CHANNEL	1250
20m	11.0m	BOTH SIDES	NO	CHANNEL	353
20m	11.0m	NA	YES	PIPE NETWORK	500
20m	11.0m	NA	YES	PIPE NETWORK	1047
20m	8.0m	NA	YES	PIPE NETWORK	170
20m	8.0m	NA	YES	PIPE NETWORK	192
20m	8.0m	RHS.	LHS.	CULVERT / CHANNEL	285
20m	11.0m	ch250 - ch.835	LHS.=250 RHS =ALL	CULVERT / CHANNEL	620
20m	11.0m	NA	YES	PIPE NETWORK	380
20m	8.0m	NA	YES	PIPE NETWORK	225
			1		
	ROAD WIDTH	DRAINAGE CHANNEL	KERB	DRAINAGE	ROAD LENGTH
30	10	BOTH SIDES	NO	CHANNEL	914
22	10	BOTH SIDES	NO	CHANNEL	415
20	10.4	N/A	YES	PIPE NETWORK	325

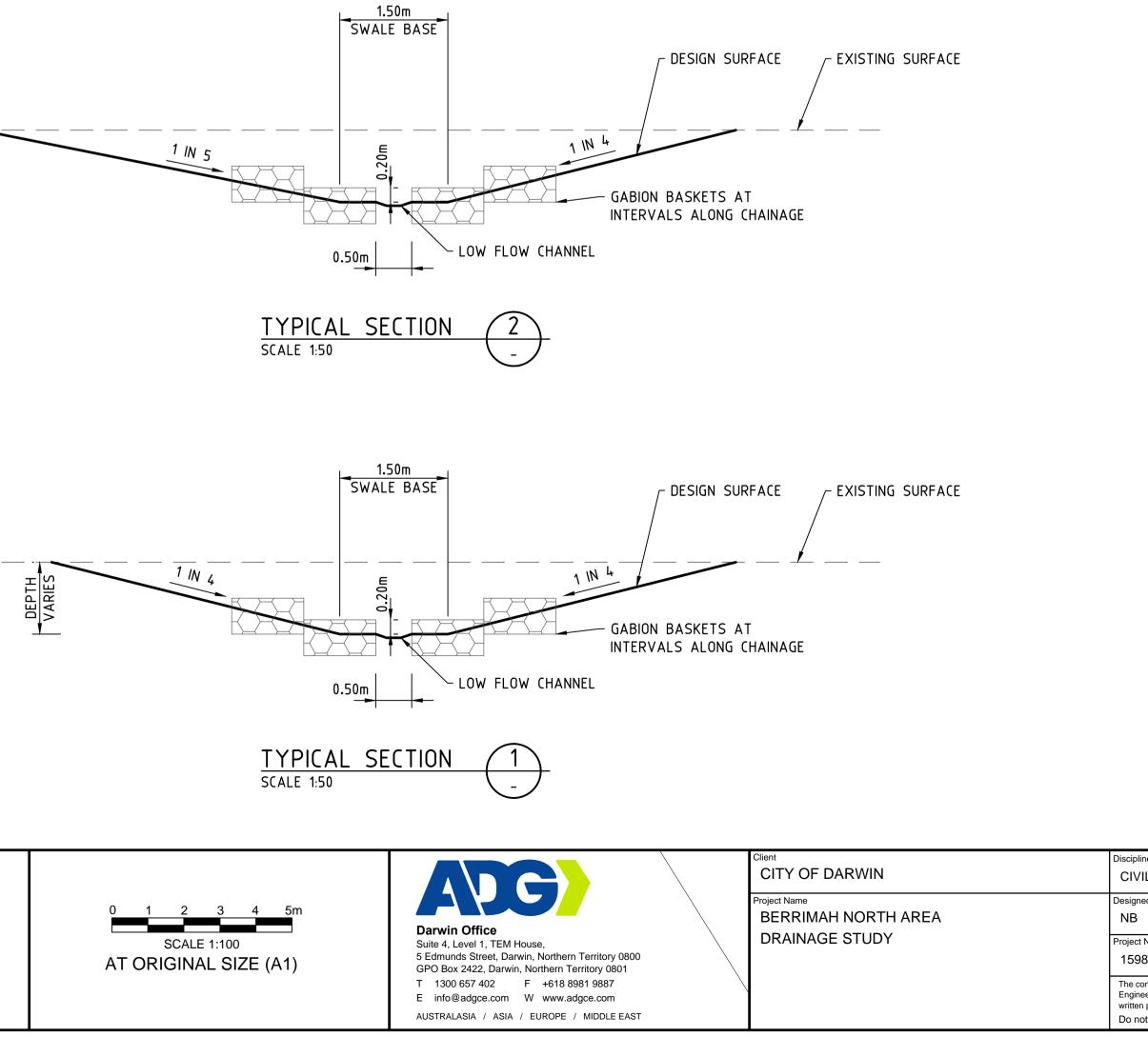
Discipline		Status	Title									
CIVIL		PRELIMINARY	POST	DE	VELC	OPM	ENT					
Designed By	Checked By	Approved By	ROAD) NE	TWC	DRK	ON A	AERI	AL F	Ю	ТО	
NB	MVI	MVI	_		-		_			_	-	
Project No.	Drawn By	Scale at A1										
15988	JD	1:5000										
	n contained in this document are		Drawing No.								Revision	
	e or copying of the document in ngineers (Aust) Pty Ltd constitute	es an infringement of copyright.	SK11								04	
Do not scale drawings. If	in doubt, ask!		•									
		FULL SIZE ON ORIGINAL) 10	20	1 30	l 40	50	60	1 70	ا 80	1 90	1 100mm

<u>NOTE:</u>

XREF'S:

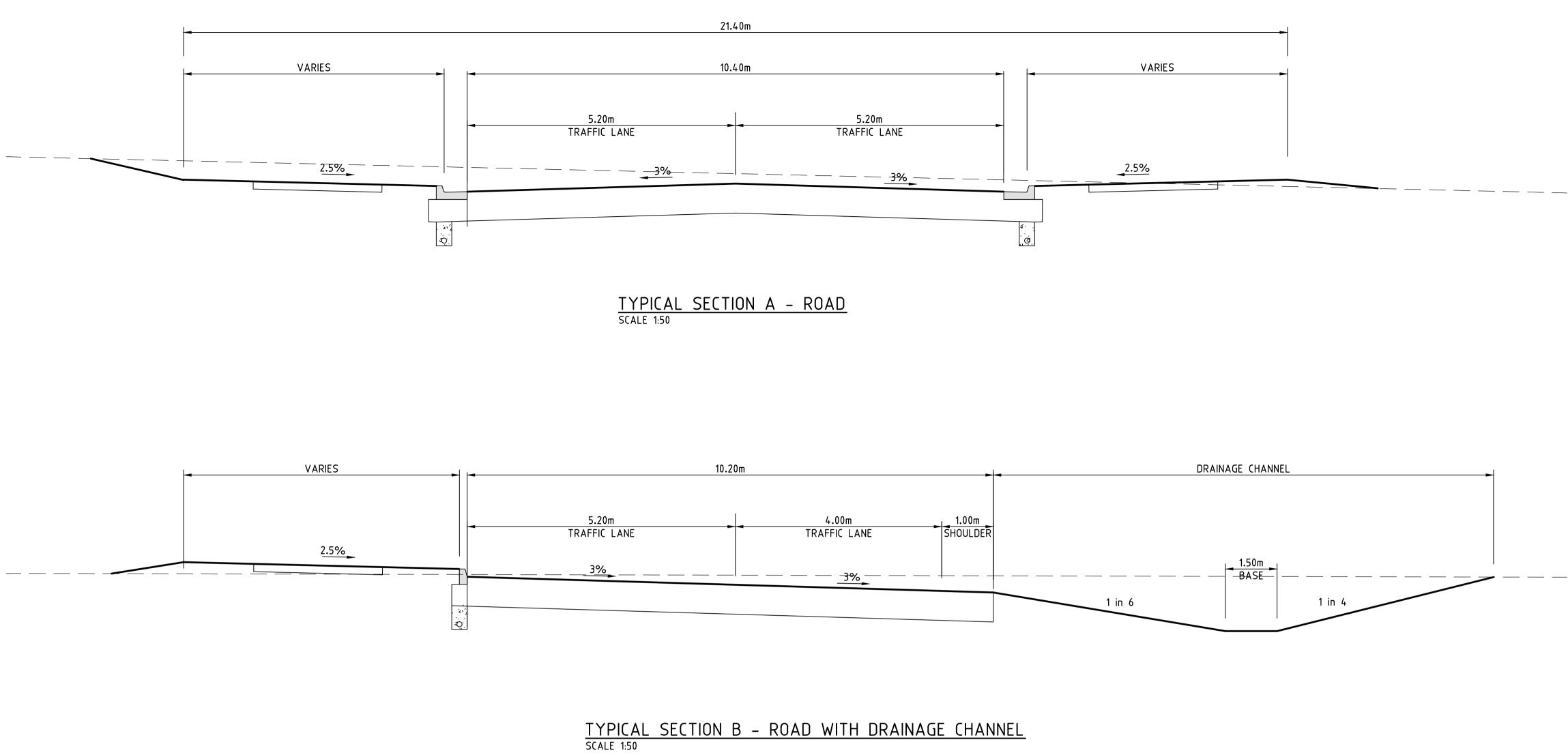
FOR DARWIN CITY COUNCIL STANDARD ROAD RESERVE TYPICAL SECTIONS REFER DRAWING DDCC-101

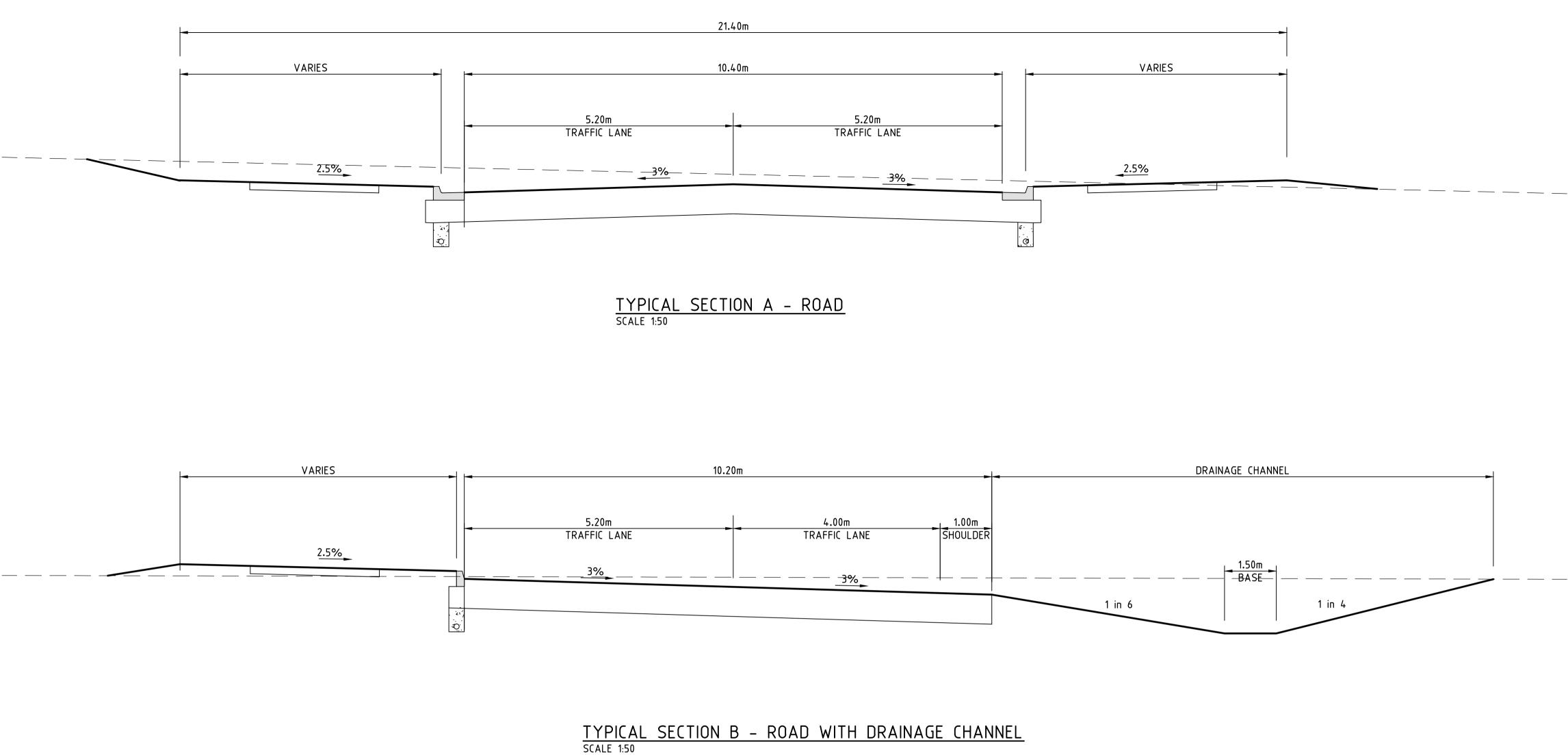
PLOT DATE: 7/9/2014 10:13 AM FILENAME: J:\15000\15988 - BERRIMAH NORTH DRAINAGE STUDY\CIVIL\DWG\15988-SK19_TYPICAL OPEN DRAIN SECTIONS.DWG

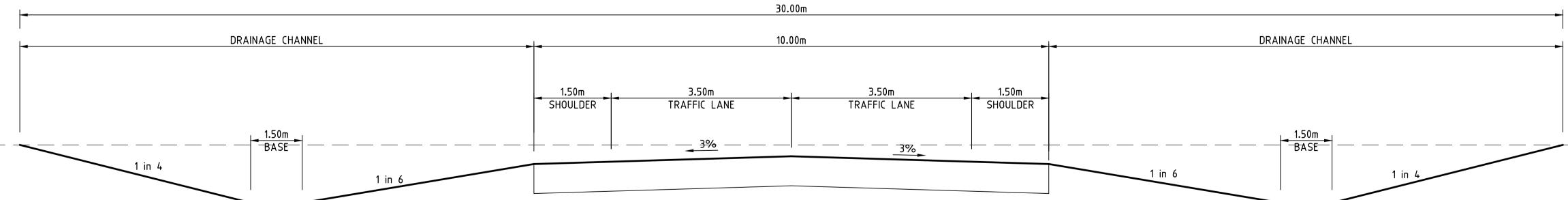

 01
 21.05.14
 Issued for Information

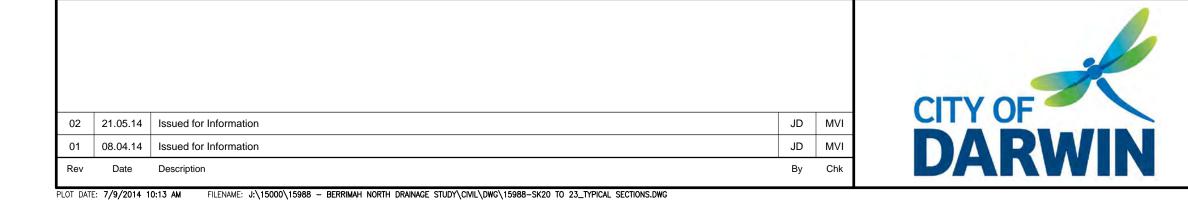
 Rev
 Date
 Description

JD MVI By Chk


DEPTH

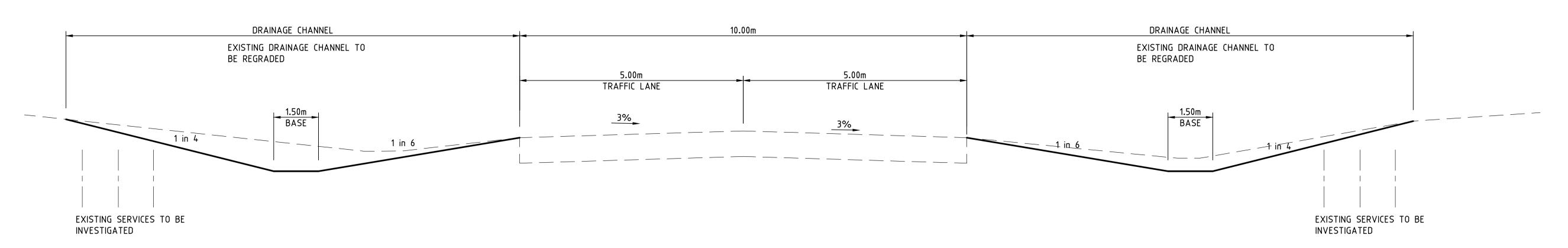




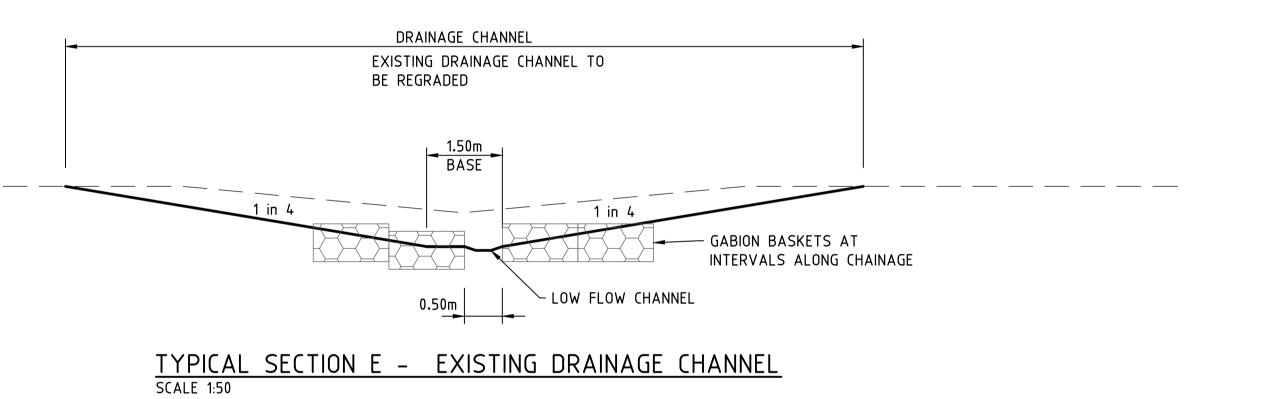

pline		Status	Title									
VIL		PRELIMINARY	TYPI	CAL	OPE	n df	RAIN	SEC	CTIO	NS		
gned By	Checked By	Approved By										
3	MVI	MVI										
ect No.	Drawn By	Scale at A1										
5988	JD	AS SHOWN										
	contained in this document are		Drawing No.								Revision	
	e or copying of the document in gineers (Aust) Pty Ltd constitute		SK19								01	
not scale drawings. If	in doubt, ask!		Unite								01	
		FULL SIZE ON ORIGINAL	I I 0 10	1 20	1 30	1 40	50	60	1 70	Г 80	90	1 100 mm

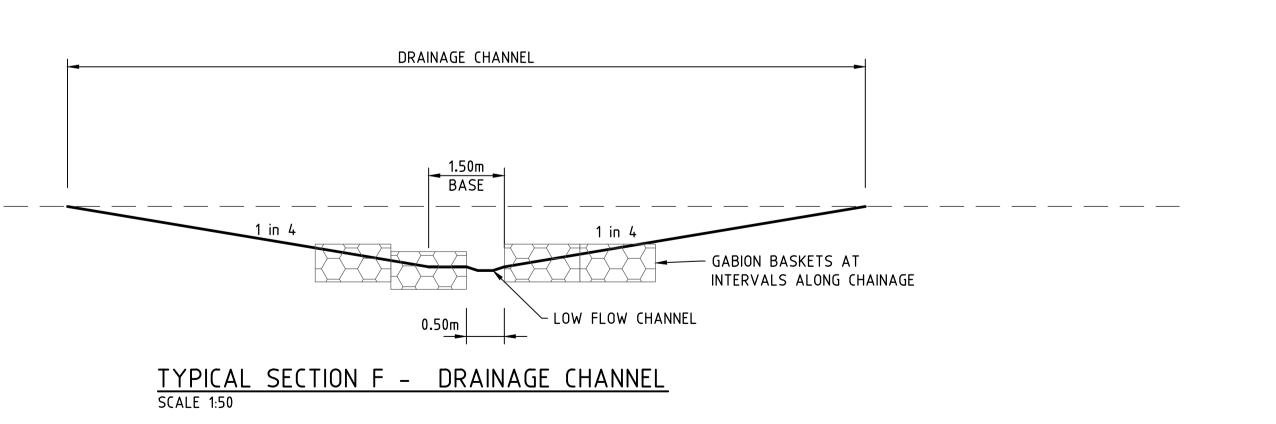
TYPICAL SECTION C - ROAD WITH DRAINAGE CHANNEL

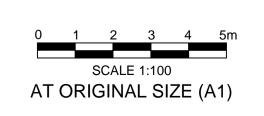
SCALE 1:100 AT ORIGINAL SIZE (A1)


Client CITY OF DARWIN Disciplir CIVI Designe NB Project 1598 The co Engine written Do no Project Name BERRIMAH NORTH AREA DRAINAGE STUDY

pline		Status	Title										
VIL		PRELIMINARY	POST	DE'	VELC	DPM	ENT	•					
gned By B	Checked By MVI	Approved By MVI	TYPI				IS						
ect No. 5988	Drawn By JD	Scale at A1 N.T.S.	SHEE	ET 1	OF 3								
ineers (Aust) Pty Ltd. Use	• • • •		Drawing No. SK20								Revision 02		
		FULL SIZE ON ORIGINAL	I I D 10	1 20	1 30	1 40	50	60	1 70	 80	90	100 mm	

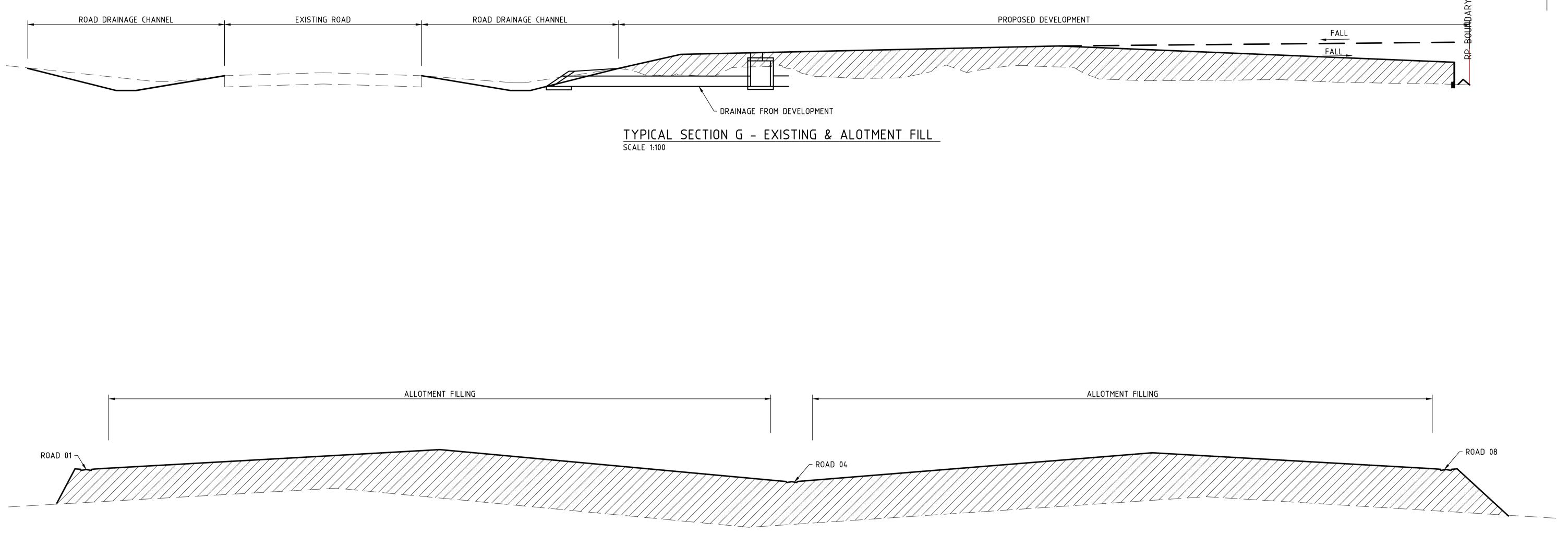


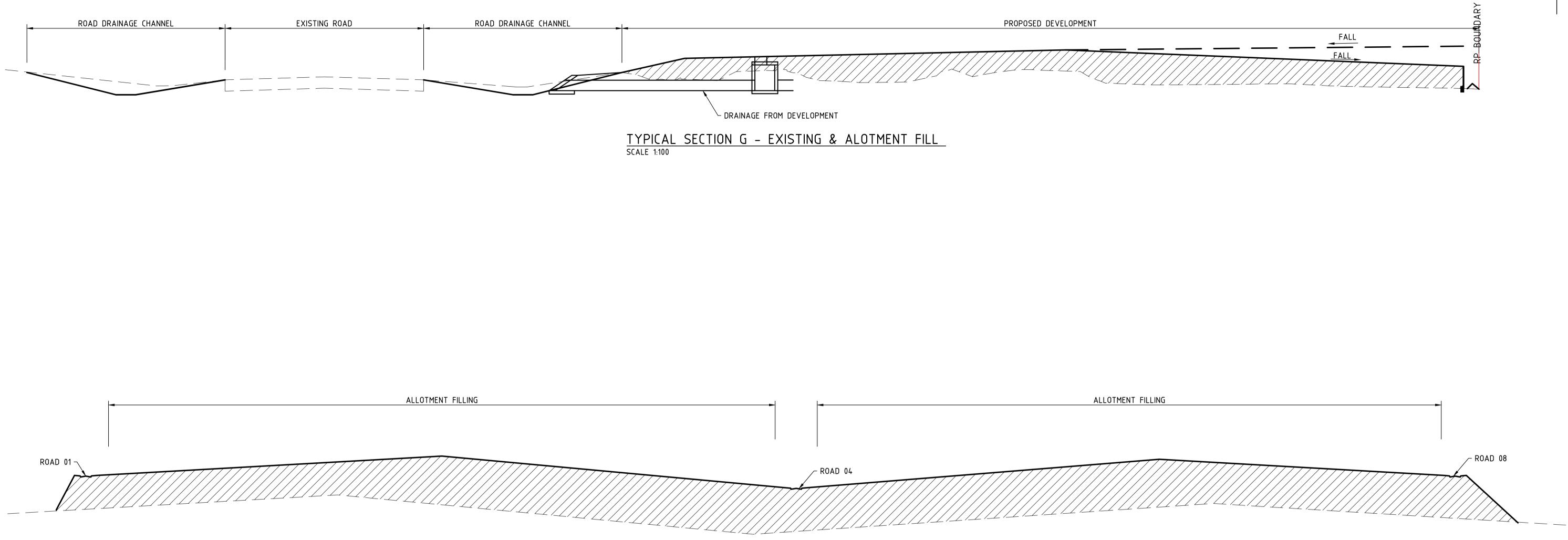

<u>NOTE:</u>

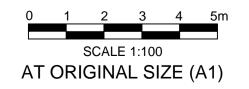

FOR DARWIN CITY COUNCIL STANDARD ROAD RESERVE TYPICAL SECTIONS REFER DRAWING DDCC-101

					CITY OF
02	21.05.14	Issued for Information	JD	MVI	CITOF
01	08.04.14	Issued for Information	JD	MVI	
Rev	Date	Description	Ву	Chk	
PLOT DAT	TE: 7/9/2014 1	10:13 AM FILENAME: J:\15000\15988 - BERRIMAH NORTH DRAINAGE STUDY\CIVIL\DWG\15988-SK20 TO 23_TYPICAL SECTIONS.DWG			

TYPICAL SECTION D - ROAD WITH EXISTING DRAINAGE CHANNEL




Client CITY OF DARWIN	Discipline CIVIL		Status PRELIMINARY	Title POST DEVELOPMENT	Π					
Project Name BERRIMAH NORTH AREA			Approved By MVI	TYPICAL SECTIONS SHEET 2 OF 3						
DRAINAGE STUDY	Project No. 15988	Drawn By JD	Scale at A1 N.T.S.							
	Engineers (Aust) Pty Ltd. Us	n contained in this document ar e or copying of the document in ngineers (Aust) Pty Ltd constitut i n doubt, ask!	whole or in part without the	Ŭ	evision 02					
			FULL SIZE ON ORIGINAL	I I I I I I I I 0 10 20 30 40 50 60 70 80	90 100					


02	21.05.14	Issued for Information	JD	MVI	CITY OF
01	08.04.14	Issued for Information	JD	MVI	DAD
Rev	Date	Description	Ву	Chk	DAN
LOT DATE	: 7/9/2014 1	D:13 AM FILENAME: J:\15000\15988 - BERRIMAH NORTH DRAINAGE STUDY\CIVIL\DWG\15988-SK20 TO 23_TYPICAL SECTIONS.DWG			

TYPICAL SECTION H – ALOTMENT FILLING SCALE NTS

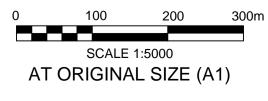
5 Edmunds Street, Darwin, Northern Territory 0800 GPO Box 2422, Darwin, Northern Territory 0801 T 1300 657 402 F +618 8981 9887 E info@adgce.com W www.adgce.com AUSTRALASIA / ASIA / EUROPE / MIDDLE EAST

Client	
CITY OF DARWIN	

Project Name BERRIMAH NORTH AREA DRAINAGE STUDY

ipline IVIL		Status PRELIMINARY	Title POST	DE'	VELO	OPM	ENT						
gned By B	Checked By MVI	Approved By MVI	TYPI(SHEE				IS						
ect No. 5988	Drawn By JD	Scale at A1 N.T.S.	01122		0.0								
gineers (Aust) Pty Ltd. Use	n contained in this document are e or copying of the document in igineers (Aust) Pty Ltd constitute in doubt, ask!	whole or in part without the	Drawing No. SK22								Revision 02		
		FULL SIZE ON ORIGINAL	I I 0 10	1 20	1 30	1 40	ا 50	60	ا 70	ا 80	90	1 100 mr	n

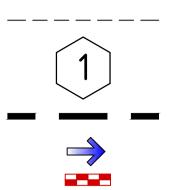
Appendix L Developer Contribution Details


CITY OF	
DARWIN	

JD MVI JD MVI

By Chk

02	09.07.14	Issued for Information
01	21.05.14	Issued for Information
Rev	Date	Description


PLOT DATE: 7/9/2014 10:14 AM FILENAME: J:\15000\15988 - BERRIMAH NORTH DRAINAGE STUDY\CIVIL\DWG\15988-SK31_DEVELOPER CONTRIBUTION AREAS.DWG

Client CITY OF DARWIN	Discipline CIVIL		Status PRELIMINARY	DEVELOPER CONTRIBUTION AREAS	3
BERRIMAH NORTH AREA	NB	MVI	Approved By MVI Scale at A1 1:5000		
	Engineers (Aust) Pty Ltd. Use	• • • •			ovision 02
			FULL SIZE ON ORIGINAL (1 0 10 20 30 40 50 60 70 80	90 100mm

LEGEND

EXISTING SURFACE CONTOURS EXISTING LOT BOUNDARY EXISTING EASEMENT

CATCHMENT LABEL

DEVELOPER CONTRIBUTION BOUNDARY FLOW PATH EXISTING STORMWATER CULVERT

	SITE:	Berrimo	Berrimah North Area							
	Local Authority (COUNCII	.): City of	Darwin							
		UNITS	ESTIMATE D RATE	ESTIM	ATED COST					
ITEM	DESCRIPTION			Quantit	Amount					
			(\$/unit)	y (Units)	(\$)					
F	PART A - CIVIL PREPARATION				\$451,290					
	PART B - EARTHWORKS				\$616,896					
F	PART D - STORMWATER DRAINAGE				\$1,811,218					
S	Sub Total				\$2,879,404					
F	PART J - ALLOWANCES				\$547,087					
(Contract Price			l	\$3,426,491					

	PART A - CIVIL PREPARATION				
1	Site establishment	ha	970	307	297,790
2	Erosion and Sediment Control Structures (silt fences)	ha	500	307	153,500

TOTAL PART A - CIVIL PREPARATION

\$451,290

	PAR	T B - EARTHWORKS					
1	Earth	nworks					
	a)	Cut for open drains	m ³	24	25704	616,896	
	b)	Allotment fill (not included - developers cost)	m ³	0.0	0	0	
	TOTAL PART B - EARTHWORKS						

Ref: 15988 C R001 Revision 5 19.08.2014.docx August 2014

	PART D - STORMWATER DRAINAGE				
1	Stormwater pipe drainage (375 - 525)	m	250	3700	925,000
2	Rock protection (Gabions)	m ³	260	100	26,000
3	Concrete lining in open drain	m ³	312	81	25,272
4	Grass treatment in open drains (including topsoil)	m2	14	9639	134,946
5	Detention Basin	Item	100,000.00	7	700,000

TOTAL PART D - STORMWATER DRAINAGE

\$1,811,218

PART J - ALLOWANCES				
Allowances for Design and Documentation	Item	0.04	1	115,176
Allowances for Contingency (15%)	item	0.15	1	431,911
TOTAL PART J - ALLOW	\$547,087			

Brisbane

584 Milton Road, Cnr Sylvan Rd Toowong, QLD 4066 PO Box 1492 Toowong BC, QLD 4066 **Phone:** +61 07 3300 8800 **Fax:** +61 07 3871 2266 **Email:** bris@adgce.com

Sunshine Coast

Level 3, 2 Emporio Place Maroochydore QLD 4558 PO Box 5014 Maroochydore BC, QLD 4558 Phone: +61 07 5444 0400 Fax: +61 07 5444 0536 Email: info@adgce.com

Melbourne

22 - 204/218 Dryburgh Street North Melbourne, Vic 3051 Phone: +61 03 9269 6300 Fax: +61 03 9328 4599 Email: info@adgce.com

Gladstone

AC

35 Lord Street, Cnr Glenlyon St Gladstone, QLD 4680 Phone: +61 07 4972 9455 Email: info@adgce.com

Darwin

Suite 4, Lvl 1, 5 Edmunds Street Darwin, NT 0800 GPO Box 2422 Darwin, NT 0801 Phone: +61 08 8944 6300 Fax: +61 08 8981 9887 Email: info@adgce.com

Gold Coast

Suite 201, Lvl 1, 1 Short Street Southport, QLD 4215 PO Box 208 Southport, QLD 4215 Phone: +61 07 5552 4700 Fax: +61 07 5528 4723 Email: info@adgce.com

Perth

51 Forrest Street Subiaco WA 6008 PO Box 443 Subiaco WA 6904 Phone: +61 08 9217 0900 Email: info@adgce.com

